Enter a problem...
Trigonometry Examples
11+sin(x)-11-sin(x)11+sin(x)−11−sin(x)
Step 1
To write 11+sin(x)11+sin(x) as a fraction with a common denominator, multiply by 1-sin(x)1-sin(x)1−sin(x)1−sin(x).
11+sin(x)⋅1-sin(x)1-sin(x)-11-sin(x)11+sin(x)⋅1−sin(x)1−sin(x)−11−sin(x)
Step 2
To write -11-sin(x)−11−sin(x) as a fraction with a common denominator, multiply by 1+sin(x)1+sin(x)1+sin(x)1+sin(x).
11+sin(x)⋅1-sin(x)1-sin(x)-11-sin(x)⋅1+sin(x)1+sin(x)11+sin(x)⋅1−sin(x)1−sin(x)−11−sin(x)⋅1+sin(x)1+sin(x)
Step 3
Step 3.1
Multiply 11+sin(x)11+sin(x) by 1-sin(x)1-sin(x)1−sin(x)1−sin(x).
1-sin(x)(1+sin(x))(1-sin(x))-11-sin(x)⋅1+sin(x)1+sin(x)
Step 3.2
Multiply 11-sin(x) by 1+sin(x)1+sin(x).
1-sin(x)(1+sin(x))(1-sin(x))-1+sin(x)(1-sin(x))(1+sin(x))
Step 3.3
Reorder the factors of (1-sin(x))(1+sin(x)).
1-sin(x)(1+sin(x))(1-sin(x))-1+sin(x)(1+sin(x))(1-sin(x))
1-sin(x)(1+sin(x))(1-sin(x))-1+sin(x)(1+sin(x))(1-sin(x))
Step 4
Combine the numerators over the common denominator.
1-sin(x)-(1+sin(x))(1+sin(x))(1-sin(x))
Step 5
Step 5.1
Apply the distributive property.
1-sin(x)-1⋅1-sin(x)(1+sin(x))(1-sin(x))
Step 5.2
Multiply -1 by 1.
1-sin(x)-1-sin(x)(1+sin(x))(1-sin(x))
Step 5.3
Subtract 1 from 1.
0-sin(x)-sin(x)(1+sin(x))(1-sin(x))
Step 5.4
Subtract sin(x) from 0.
-sin(x)-sin(x)(1+sin(x))(1-sin(x))
Step 5.5
Subtract sin(x) from -sin(x).
-2sin(x)(1+sin(x))(1-sin(x))
-2sin(x)(1+sin(x))(1-sin(x))
Step 6
Move the negative in front of the fraction.
-2sin(x)(1+sin(x))(1-sin(x))