Enter a problem...
Trigonometry Examples
tan(105)tan(105)
Step 1
First, split the angle into two angles where the values of the six trigonometric functions are known. In this case, 105105 can be split into 45+6045+60.
tan(45+60)tan(45+60)
Step 2
Use the sum formula for tangent to simplify the expression. The formula states that tan(A+B)=tan(A)+tan(B)1-tan(A)tan(B)tan(A+B)=tan(A)+tan(B)1−tan(A)tan(B).
tan(45)+tan(60)1-tan(45)tan(60)tan(45)+tan(60)1−tan(45)tan(60)
Step 3
Step 3.1
The exact value of tan(45)tan(45) is 11.
1+tan(60)1-tan(45)tan(60)1+tan(60)1−tan(45)tan(60)
Step 3.2
The exact value of tan(60)tan(60) is √3√3.
1+√31-tan(45)tan(60)1+√31−tan(45)tan(60)
1+√31-tan(45)tan(60)1+√31−tan(45)tan(60)
Step 4
Step 4.1
The exact value of tan(45)tan(45) is 11.
1+√31-1⋅1tan(60)1+√31−1⋅1tan(60)
Step 4.2
Multiply -1−1 by 11.
1+√31-1tan(60)1+√31−1tan(60)
Step 4.3
The exact value of tan(60)tan(60) is √3√3.
1+√31-1√31+√31−1√3
Step 4.4
Rewrite -1√3−1√3 as -√3−√3.
1+√31-√31+√31−√3
1+√31-√31+√31−√3
Step 5
Multiply 1+√31-√31+√31−√3 by 1+√31+√31+√31+√3.
1+√31-√3⋅1+√31+√31+√31−√3⋅1+√31+√3
Step 6
Step 6.1
Multiply 1+√31-√31+√31−√3 by 1+√31+√31+√31+√3.
(1+√3)(1+√3)(1-√3)(1+√3)(1+√3)(1+√3)(1−√3)(1+√3)
Step 6.2
Expand the denominator using the FOIL method.
(1+√3)(1+√3)1+√3-√3-√32(1+√3)(1+√3)1+√3−√3−√32
Step 6.3
Simplify.
(1+√3)(1+√3)-2(1+√3)(1+√3)−2
(1+√3)(1+√3)-2(1+√3)(1+√3)−2
Step 7
Step 7.1
Raise 1+√31+√3 to the power of 11.
(1+√3)1(1+√3)-2(1+√3)1(1+√3)−2
Step 7.2
Raise 1+√31+√3 to the power of 11.
(1+√3)1(1+√3)1-2(1+√3)1(1+√3)1−2
Step 7.3
Use the power rule aman=am+naman=am+n to combine exponents.
(1+√3)1+1-2(1+√3)1+1−2
Step 7.4
Add 11 and 11.
(1+√3)2-2(1+√3)2−2
(1+√3)2-2(1+√3)2−2
Step 8
Rewrite (1+√3)2(1+√3)2 as (1+√3)(1+√3)(1+√3)(1+√3).
(1+√3)(1+√3)-2(1+√3)(1+√3)−2
Step 9
Step 9.1
Apply the distributive property.
1(1+√3)+√3(1+√3)-21(1+√3)+√3(1+√3)−2
Step 9.2
Apply the distributive property.
1⋅1+1√3+√3(1+√3)-21⋅1+1√3+√3(1+√3)−2
Step 9.3
Apply the distributive property.
1⋅1+1√3+√3⋅1+√3√3-21⋅1+1√3+√3⋅1+√3√3−2
1⋅1+1√3+√3⋅1+√3√3-21⋅1+1√3+√3⋅1+√3√3−2
Step 10
Step 10.1
Simplify each term.
Step 10.1.1
Multiply 11 by 11.
1+1√3+√3⋅1+√3√3-21+1√3+√3⋅1+√3√3−2
Step 10.1.2
Multiply √3√3 by 11.
1+√3+√3⋅1+√3√3-21+√3+√3⋅1+√3√3−2
Step 10.1.3
Multiply √3√3 by 11.
1+√3+√3+√3√3-21+√3+√3+√3√3−2
Step 10.1.4
Combine using the product rule for radicals.
1+√3+√3+√3⋅3-21+√3+√3+√3⋅3−2
Step 10.1.5
Multiply 33 by 33.
1+√3+√3+√9-21+√3+√3+√9−2
Step 10.1.6
Rewrite 99 as 3232.
1+√3+√3+√32-21+√3+√3+√32−2
Step 10.1.7
Pull terms out from under the radical, assuming positive real numbers.
1+√3+√3+3-21+√3+√3+3−2
1+√3+√3+3-21+√3+√3+3−2
Step 10.2
Add 11 and 33.
4+√3+√3-24+√3+√3−2
Step 10.3
Add √3√3 and √3√3.
4+2√3-24+2√3−2
4+2√3-24+2√3−2
Step 11
Step 11.1
Factor 22 out of 44.
2(2)+2√3-22(2)+2√3−2
Step 11.2
Factor 22 out of 2√32√3.
2(2)+2(√3)-22(2)+2(√3)−2
Step 11.3
Factor 22 out of 2(2)+2(√3)2(2)+2(√3).
2(2+√3)-22(2+√3)−2
Step 11.4
Move the negative one from the denominator of 2+√3-12+√3−1.
-1⋅(2+√3)−1⋅(2+√3)
-1⋅(2+√3)−1⋅(2+√3)
Step 12
Rewrite -1⋅(2+√3)−1⋅(2+√3) as -(2+√3)−(2+√3).
-(2+√3)−(2+√3)
Step 13
Apply the distributive property.
-1⋅2-√3−1⋅2−√3
Step 14
Multiply -1−1 by 22.
-2-√3−2−√3
Step 15
The result can be shown in multiple forms.
Exact Form:
-2-√3−2−√3
Decimal Form:
-3.73205080…