Trigonometry Examples

Convert to Trigonometric Form 2+2i
2+2i2+2i
Step 1
This is the trigonometric form of a complex number where |z||z| is the modulus and θθ is the angle created on the complex plane.
z=a+bi=|z|(cos(θ)+isin(θ))z=a+bi=|z|(cos(θ)+isin(θ))
Step 2
The modulus of a complex number is the distance from the origin on the complex plane.
|z|=a2+b2|z|=a2+b2 where z=a+biz=a+bi
Step 3
Substitute the actual values of a=2a=2 and b=2b=2.
|z|=22+22|z|=22+22
Step 4
Find |z||z|.
Tap for more steps...
Step 4.1
Raise 22 to the power of 22.
|z|=4+22|z|=4+22
Step 4.2
Raise 22 to the power of 22.
|z|=4+4|z|=4+4
Step 4.3
Add 44 and 44.
|z|=8|z|=8
Step 4.4
Rewrite 88 as 222222.
Tap for more steps...
Step 4.4.1
Factor 44 out of 88.
|z|=4(2)|z|=4(2)
Step 4.4.2
Rewrite 44 as 2222.
|z|=222|z|=222
|z|=222|z|=222
Step 4.5
Pull terms out from under the radical.
|z|=22|z|=22
|z|=22|z|=22
Step 5
The angle of the point on the complex plane is the inverse tangent of the complex portion over the real portion.
θ=arctan(22)θ=arctan(22)
Step 6
Since inverse tangent of 2222 produces an angle in the first quadrant, the value of the angle is π4π4.
θ=π4θ=π4
Step 7
Substitute the values of θ=π4θ=π4 and |z|=22|z|=22.
22(cos(π4)+isin(π4))22(cos(π4)+isin(π4))
 [x2  12  π  xdx ]  x2  12  π  xdx