Enter a problem...
Trigonometry Examples
2+2i2+2i
Step 1
This is the trigonometric form of a complex number where |z||z| is the modulus and θθ is the angle created on the complex plane.
z=a+bi=|z|(cos(θ)+isin(θ))z=a+bi=|z|(cos(θ)+isin(θ))
Step 2
The modulus of a complex number is the distance from the origin on the complex plane.
|z|=√a2+b2|z|=√a2+b2 where z=a+biz=a+bi
Step 3
Substitute the actual values of a=2a=2 and b=2b=2.
|z|=√22+22|z|=√22+22
Step 4
Step 4.1
Raise 22 to the power of 22.
|z|=√4+22|z|=√4+22
Step 4.2
Raise 22 to the power of 22.
|z|=√4+4|z|=√4+4
Step 4.3
Add 44 and 44.
|z|=√8|z|=√8
Step 4.4
Rewrite 88 as 22⋅222⋅2.
Step 4.4.1
Factor 44 out of 88.
|z|=√4(2)|z|=√4(2)
Step 4.4.2
Rewrite 44 as 2222.
|z|=√22⋅2|z|=√22⋅2
|z|=√22⋅2|z|=√22⋅2
Step 4.5
Pull terms out from under the radical.
|z|=2√2|z|=2√2
|z|=2√2|z|=2√2
Step 5
The angle of the point on the complex plane is the inverse tangent of the complex portion over the real portion.
θ=arctan(22)θ=arctan(22)
Step 6
Since inverse tangent of 2222 produces an angle in the first quadrant, the value of the angle is π4π4.
θ=π4θ=π4
Step 7
Substitute the values of θ=π4θ=π4 and |z|=2√2|z|=2√2.
2√2(cos(π4)+isin(π4))2√2(cos(π4)+isin(π4))