Enter a problem...
Trigonometry Examples
Step 1
Convert from rectangular coordinates to polar coordinates using the conversion formulas.
Step 2
Replace and with the actual values.
Step 3
Step 3.1
Simplify the expression.
Step 3.1.1
One to any power is one.
Step 3.1.2
Apply the product rule to .
Step 3.1.3
Raise to the power of .
Step 3.1.4
Multiply by .
Step 3.2
Rewrite as .
Step 3.2.1
Use to rewrite as .
Step 3.2.2
Apply the power rule and multiply exponents, .
Step 3.2.3
Combine and .
Step 3.2.4
Cancel the common factor of .
Step 3.2.4.1
Cancel the common factor.
Step 3.2.4.2
Rewrite the expression.
Step 3.2.5
Evaluate the exponent.
Step 3.3
Simplify the expression.
Step 3.3.1
Add and .
Step 3.3.2
Rewrite as .
Step 3.4
Pull terms out from under the radical, assuming positive real numbers.
Step 4
Replace and with the actual values.
Step 5
The inverse tangent of is .
Step 6
This is the result of the conversion to polar coordinates in form.