Trigonometry Examples

Find the Exact Value tan((7pi)/8)
tan(7π8)
Step 1
Rewrite 7π8 as an angle where the values of the six trigonometric functions are known divided by 2.
tan(7π42)
Step 2
Apply the tangent half-angle identity.
±1-cos(7π4)1+cos(7π4)
Step 3
Change the ± to - because tangent is negative in the second quadrant.
-1-cos(7π4)1+cos(7π4)
Step 4
Simplify -1-cos(7π4)1+cos(7π4).
Tap for more steps...
Step 4.1
Apply the reference angle by finding the angle with equivalent trig values in the first quadrant.
-1-cos(π4)1+cos(7π4)
Step 4.2
The exact value of cos(π4) is 22.
-1-221+cos(7π4)
Step 4.3
Write 1 as a fraction with a common denominator.
-22-221+cos(7π4)
Step 4.4
Combine the numerators over the common denominator.
-2-221+cos(7π4)
Step 4.5
Apply the reference angle by finding the angle with equivalent trig values in the first quadrant.
-2-221+cos(π4)
Step 4.6
The exact value of cos(π4) is 22.
-2-221+22
Step 4.7
Write 1 as a fraction with a common denominator.
-2-2222+22
Step 4.8
Combine the numerators over the common denominator.
-2-222+22
Step 4.9
Multiply the numerator by the reciprocal of the denominator.
-2-2222+2
Step 4.10
Cancel the common factor of 2.
Tap for more steps...
Step 4.10.1
Cancel the common factor.
-2-2222+2
Step 4.10.2
Rewrite the expression.
-(2-2)12+2
-(2-2)12+2
Step 4.11
Multiply 12+2 by 2-22-2.
-(2-2)(12+22-22-2)
Step 4.12
Multiply 12+2 by 2-22-2.
-(2-2)2-2(2+2)(2-2)
Step 4.13
Expand the denominator using the FOIL method.
-(2-2)2-24-22+22-22
Step 4.14
Simplify.
-(2-2)2-22
Step 4.15
Apply the distributive property.
-22-22-22-22
Step 4.16
Cancel the common factor of 2.
Tap for more steps...
Step 4.16.1
Cancel the common factor.
-22-22-22-22
Step 4.16.2
Rewrite the expression.
-2-2-22-22
-2-2-22-22
Step 4.17
Combine 2-22 and 2.
-2-2-(2-2)22
Step 4.18
Simplify each term.
Tap for more steps...
Step 4.18.1
Apply the distributive property.
-2-2-22-222
Step 4.18.2
Multiply -22.
Tap for more steps...
Step 4.18.2.1
Raise 2 to the power of 1.
-2-2-22-(212)2
Step 4.18.2.2
Raise 2 to the power of 1.
-2-2-22-(2121)2
Step 4.18.2.3
Use the power rule aman=am+n to combine exponents.
-2-2-22-21+12
Step 4.18.2.4
Add 1 and 1.
-2-2-22-222
-2-2-22-222
Step 4.18.3
Simplify each term.
Tap for more steps...
Step 4.18.3.1
Rewrite 22 as 2.
Tap for more steps...
Step 4.18.3.1.1
Use nax=axn to rewrite 2 as 212.
-2-2-22-(212)22
Step 4.18.3.1.2
Apply the power rule and multiply exponents, (am)n=amn.
-2-2-22-21222
Step 4.18.3.1.3
Combine 12 and 2.
-2-2-22-2222
Step 4.18.3.1.4
Cancel the common factor of 2.
Tap for more steps...
Step 4.18.3.1.4.1
Cancel the common factor.
-2-2-22-2222
Step 4.18.3.1.4.2
Rewrite the expression.
-2-2-22-212
-2-2-22-212
Step 4.18.3.1.5
Evaluate the exponent.
-2-2-22-122
-2-2-22-122
Step 4.18.3.2
Multiply -1 by 2.
-2-2-22-22
-2-2-22-22
Step 4.18.4
Cancel the common factor of 22-2 and 2.
Tap for more steps...
Step 4.18.4.1
Factor 2 out of 22.
-2-2-2(2)-22
Step 4.18.4.2
Factor 2 out of -2.
-2-2-2(2)+2-12
Step 4.18.4.3
Factor 2 out of 2(2)+2(-1).
-2-2-2(2-1)2
Step 4.18.4.4
Cancel the common factors.
Tap for more steps...
Step 4.18.4.4.1
Factor 2 out of 2.
-2-2-2(2-1)2(1)
Step 4.18.4.4.2
Cancel the common factor.
-2-2-2(2-1)21
Step 4.18.4.4.3
Rewrite the expression.
-2-2-2-11
Step 4.18.4.4.4
Divide 2-1 by 1.
-2-2-(2-1)
-2-2-(2-1)
-2-2-(2-1)
Step 4.18.5
Apply the distributive property.
-2-2-2--1
Step 4.18.6
Multiply -1 by -1.
-2-2-2+1
-2-2-2+1
Step 4.19
Add 2 and 1.
-3-2-2
Step 4.20
Subtract 2 from -2.
-3-22
-3-22
Step 5
The result can be shown in multiple forms.
Exact Form:
-3-22
Decimal Form:
-0.41421356
(
(
)
)
|
|
[
[
]
]
°
°
7
7
8
8
9
9
θ
θ
4
4
5
5
6
6
/
/
^
^
×
×
>
>
π
π
1
1
2
2
3
3
-
-
+
+
÷
÷
<
<
,
,
0
0
.
.
%
%
=
=
 [x2  12  π  xdx ]