Enter a problem...
Trigonometry Examples
cos(π4+π3)cos(π4+π3)
Step 1
To write π4π4 as a fraction with a common denominator, multiply by 3333.
cos(π4⋅33+π3)cos(π4⋅33+π3)
Step 2
To write π3π3 as a fraction with a common denominator, multiply by 4444.
cos(π4⋅33+π3⋅44)cos(π4⋅33+π3⋅44)
Step 3
Step 3.1
Multiply π4π4 by 3333.
cos(π⋅34⋅3+π3⋅44)cos(π⋅34⋅3+π3⋅44)
Step 3.2
Multiply 44 by 33.
cos(π⋅312+π3⋅44)cos(π⋅312+π3⋅44)
Step 3.3
Multiply π3π3 by 4444.
cos(π⋅312+π⋅43⋅4)cos(π⋅312+π⋅43⋅4)
Step 3.4
Multiply 33 by 44.
cos(π⋅312+π⋅412)cos(π⋅312+π⋅412)
cos(π⋅312+π⋅412)cos(π⋅312+π⋅412)
Step 4
Combine the numerators over the common denominator.
cos(π⋅3+π⋅412)cos(π⋅3+π⋅412)
Step 5
Step 5.1
Move 33 to the left of ππ.
cos(3⋅π+π⋅412)cos(3⋅π+π⋅412)
Step 5.2
Move 44 to the left of ππ.
cos(3π+4⋅π12)cos(3π+4⋅π12)
Step 5.3
Add 3π3π and 4π4π.
cos(7π12)cos(7π12)
cos(7π12)cos(7π12)
Step 6
Step 6.1
Rewrite 7π127π12 as an angle where the values of the six trigonometric functions are known divided by 22.
cos(7π62)cos(7π62)
Step 6.2
Apply the cosine half-angle identity cos(x2)=±√1+cos(x)2cos(x2)=±√1+cos(x)2.
±√1+cos(7π6)2±
⎷1+cos(7π6)2
Step 6.3
Change the ±± to -− because cosine is negative in the second quadrant.
-√1+cos(7π6)2−
⎷1+cos(7π6)2
Step 6.4
Simplify -√1+cos(7π6)2−
⎷1+cos(7π6)2.
Step 6.4.1
Apply the reference angle by finding the angle with equivalent trig values in the first quadrant. Make the expression negative because cosine is negative in the third quadrant.
-√1-cos(π6)2−
⎷1−cos(π6)2
Step 6.4.2
The exact value of cos(π6)cos(π6) is √32√32.
-√1-√322−√1−√322
Step 6.4.3
Write 11 as a fraction with a common denominator.
-√22-√322−√22−√322
Step 6.4.4
Combine the numerators over the common denominator.
-√2-√322−√2−√322
Step 6.4.5
Multiply the numerator by the reciprocal of the denominator.
-√2-√32⋅12−√2−√32⋅12
Step 6.4.6
Multiply 2-√32⋅122−√32⋅12.
Step 6.4.6.1
Multiply 2-√322−√32 by 1212.
-√2-√32⋅2−√2−√32⋅2
Step 6.4.6.2
Multiply 22 by 22.
-√2-√34−√2−√34
-√2-√34−√2−√34
Step 6.4.7
Rewrite √2-√34√2−√34 as √2-√3√4√2−√3√4.
-√2-√3√4−√2−√3√4
Step 6.4.8
Simplify the denominator.
Step 6.4.8.1
Rewrite 44 as 2222.
-√2-√3√22−√2−√3√22
Step 6.4.8.2
Pull terms out from under the radical, assuming positive real numbers.
-√2-√32−√2−√32
-√2-√32−√2−√32
-√2-√32−√2−√32
-√2-√32−√2−√32
Step 7
The result can be shown in multiple forms.
Exact Form:
-√2-√32−√2−√32
Decimal Form:
-0.25881904…−0.25881904…