Trigonometry Examples

Find the Exact Value cos(pi/4+pi/3)
cos(π4+π3)cos(π4+π3)
Step 1
To write π4π4 as a fraction with a common denominator, multiply by 3333.
cos(π433+π3)cos(π433+π3)
Step 2
To write π3π3 as a fraction with a common denominator, multiply by 4444.
cos(π433+π344)cos(π433+π344)
Step 3
Write each expression with a common denominator of 1212, by multiplying each by an appropriate factor of 11.
Tap for more steps...
Step 3.1
Multiply π4π4 by 3333.
cos(π343+π344)cos(π343+π344)
Step 3.2
Multiply 44 by 33.
cos(π312+π344)cos(π312+π344)
Step 3.3
Multiply π3π3 by 4444.
cos(π312+π434)cos(π312+π434)
Step 3.4
Multiply 33 by 44.
cos(π312+π412)cos(π312+π412)
cos(π312+π412)cos(π312+π412)
Step 4
Combine the numerators over the common denominator.
cos(π3+π412)cos(π3+π412)
Step 5
Simplify the numerator.
Tap for more steps...
Step 5.1
Move 33 to the left of ππ.
cos(3π+π412)cos(3π+π412)
Step 5.2
Move 44 to the left of ππ.
cos(3π+4π12)cos(3π+4π12)
Step 5.3
Add 3π3π and 4π4π.
cos(7π12)cos(7π12)
cos(7π12)cos(7π12)
Step 6
The exact value of cos(7π12)cos(7π12) is -2-32232.
Tap for more steps...
Step 6.1
Rewrite 7π127π12 as an angle where the values of the six trigonometric functions are known divided by 22.
cos(7π62)cos(7π62)
Step 6.2
Apply the cosine half-angle identity cos(x2)=±1+cos(x)2cos(x2)=±1+cos(x)2.
±1+cos(7π6)2± 1+cos(7π6)2
Step 6.3
Change the ±± to - because cosine is negative in the second quadrant.
-1+cos(7π6)2 1+cos(7π6)2
Step 6.4
Simplify -1+cos(7π6)2 1+cos(7π6)2.
Tap for more steps...
Step 6.4.1
Apply the reference angle by finding the angle with equivalent trig values in the first quadrant. Make the expression negative because cosine is negative in the third quadrant.
-1-cos(π6)2 1cos(π6)2
Step 6.4.2
The exact value of cos(π6)cos(π6) is 3232.
-1-3221322
Step 6.4.3
Write 11 as a fraction with a common denominator.
-22-32222322
Step 6.4.4
Combine the numerators over the common denominator.
-2-3222322
Step 6.4.5
Multiply the numerator by the reciprocal of the denominator.
-2-321223212
Step 6.4.6
Multiply 2-321223212.
Tap for more steps...
Step 6.4.6.1
Multiply 2-32232 by 1212.
-2-3222322
Step 6.4.6.2
Multiply 22 by 22.
-2-34234
-2-34234
Step 6.4.7
Rewrite 2-34234 as 2-34234.
-2-34234
Step 6.4.8
Simplify the denominator.
Tap for more steps...
Step 6.4.8.1
Rewrite 44 as 2222.
-2-3222322
Step 6.4.8.2
Pull terms out from under the radical, assuming positive real numbers.
-2-32232
-2-32232
-2-32232
-2-32232
Step 7
The result can be shown in multiple forms.
Exact Form:
-2-32232
Decimal Form:
-0.258819040.25881904
 [x2  12  π  xdx ]  x2  12  π  xdx