Enter a problem...
Trigonometry Examples
(-12,√32)
Step 1
To find the sin(θ) between the x-axis and the line between the points (0,0) and (-12,√32), draw the triangle between the three points (0,0), (-12,0), and (-12,√32).
Opposite : √32
Adjacent : -12
Step 2
Step 2.1
Use the power rule (ab)n=anbn to distribute the exponent.
Step 2.1.1
Apply the product rule to -12.
√(-1)2(12)2+(√32)2
Step 2.1.2
Apply the product rule to 12.
√(-1)21222+(√32)2
√(-1)21222+(√32)2
Step 2.2
Simplify the expression.
Step 2.2.1
Raise -1 to the power of 2.
√11222+(√32)2
Step 2.2.2
Multiply 1222 by 1.
√1222+(√32)2
Step 2.2.3
One to any power is one.
√122+(√32)2
Step 2.2.4
Raise 2 to the power of 2.
√14+(√32)2
Step 2.2.5
Apply the product rule to √32.
√14+√3222
√14+√3222
Step 2.3
Rewrite √32 as 3.
Step 2.3.1
Use n√ax=axn to rewrite √3 as 312.
√14+(312)222
Step 2.3.2
Apply the power rule and multiply exponents, (am)n=amn.
√14+312⋅222
Step 2.3.3
Combine 12 and 2.
√14+32222
Step 2.3.4
Cancel the common factor of 2.
Step 2.3.4.1
Cancel the common factor.
√14+32222
Step 2.3.4.2
Rewrite the expression.
√14+3122
√14+3122
Step 2.3.5
Evaluate the exponent.
√14+322
√14+322
Step 2.4
Simplify the expression.
Step 2.4.1
Raise 2 to the power of 2.
√14+34
Step 2.4.2
Combine the numerators over the common denominator.
√1+34
Step 2.4.3
Add 1 and 3.
√44
Step 2.4.4
Divide 4 by 4.
√1
Step 2.4.5
Any root of 1 is 1.
1
1
1
Step 3
sin(θ)=OppositeHypotenuse therefore sin(θ)=√321.
√321
Step 4
Divide √32 by 1.
sin(θ)=√32
Step 5
Approximate the result.
sin(θ)=√32≈0.8660254