Enter a problem...
Trigonometry Examples
sin(x)1+cos(x)+1+cos(x)sin(x)=2csc(x)sin(x)1+cos(x)+1+cos(x)sin(x)=2csc(x)
Step 1
Start on the left side.
sin(x)1+cos(x)+1+cos(x)sin(x)sin(x)1+cos(x)+1+cos(x)sin(x)
Step 2
Step 2.1
To write sin(x)1+cos(x)sin(x)1+cos(x) as a fraction with a common denominator, multiply by sin(x)sin(x)sin(x)sin(x).
sin(x)1+cos(x)⋅sin(x)sin(x)+1+cos(x)sin(x)sin(x)1+cos(x)⋅sin(x)sin(x)+1+cos(x)sin(x)
Step 2.2
To write 1+cos(x)sin(x)1+cos(x)sin(x) as a fraction with a common denominator, multiply by 1+cos(x)1+cos(x)1+cos(x)1+cos(x).
sin(x)1+cos(x)⋅sin(x)sin(x)+1+cos(x)sin(x)⋅1+cos(x)1+cos(x)sin(x)1+cos(x)⋅sin(x)sin(x)+1+cos(x)sin(x)⋅1+cos(x)1+cos(x)
Step 2.3
Write each expression with a common denominator of (1+cos(x))sin(x)(1+cos(x))sin(x), by multiplying each by an appropriate factor of 11.
Step 2.3.1
Multiply sin(x)1+cos(x)sin(x)1+cos(x) by sin(x)sin(x)sin(x)sin(x).
sin(x)sin(x)(1+cos(x))sin(x)+1+cos(x)sin(x)⋅1+cos(x)1+cos(x)sin(x)sin(x)(1+cos(x))sin(x)+1+cos(x)sin(x)⋅1+cos(x)1+cos(x)
Step 2.3.2
Multiply 1+cos(x)sin(x)1+cos(x)sin(x) by 1+cos(x)1+cos(x)1+cos(x)1+cos(x).
sin(x)sin(x)(1+cos(x))sin(x)+(1+cos(x))(1+cos(x))sin(x)(1+cos(x))sin(x)sin(x)(1+cos(x))sin(x)+(1+cos(x))(1+cos(x))sin(x)(1+cos(x))
Step 2.3.3
Reorder the factors of (1+cos(x))sin(x)(1+cos(x))sin(x).
sin(x)sin(x)sin(x)(1+cos(x))+(1+cos(x))(1+cos(x))sin(x)(1+cos(x))sin(x)sin(x)sin(x)(1+cos(x))+(1+cos(x))(1+cos(x))sin(x)(1+cos(x))
sin(x)sin(x)sin(x)(1+cos(x))+(1+cos(x))(1+cos(x))sin(x)(1+cos(x))sin(x)sin(x)sin(x)(1+cos(x))+(1+cos(x))(1+cos(x))sin(x)(1+cos(x))
Step 2.4
Combine the numerators over the common denominator.
sin(x)sin(x)+(1+cos(x))(1+cos(x))sin(x)(1+cos(x))sin(x)sin(x)+(1+cos(x))(1+cos(x))sin(x)(1+cos(x))
Step 2.5
Simplify the numerator.
Step 2.5.1
Multiply sin(x)sin(x)sin(x)sin(x).
Step 2.5.1.1
Raise sin(x)sin(x) to the power of 11.
sin1(x)sin(x)+(1+cos(x))(1+cos(x))sin(x)(1+cos(x))sin1(x)sin(x)+(1+cos(x))(1+cos(x))sin(x)(1+cos(x))
Step 2.5.1.2
Raise sin(x)sin(x) to the power of 11.
sin1(x)sin1(x)+(1+cos(x))(1+cos(x))sin(x)(1+cos(x))sin1(x)sin1(x)+(1+cos(x))(1+cos(x))sin(x)(1+cos(x))
Step 2.5.1.3
Use the power rule aman=am+naman=am+n to combine exponents.
sin(x)1+1+(1+cos(x))(1+cos(x))sin(x)(1+cos(x))sin(x)1+1+(1+cos(x))(1+cos(x))sin(x)(1+cos(x))
Step 2.5.1.4
Add 11 and 11.
sin2(x)+(1+cos(x))(1+cos(x))sin(x)(1+cos(x))sin2(x)+(1+cos(x))(1+cos(x))sin(x)(1+cos(x))
sin2(x)+(1+cos(x))(1+cos(x))sin(x)(1+cos(x))sin2(x)+(1+cos(x))(1+cos(x))sin(x)(1+cos(x))
Step 2.5.2
Expand (1+cos(x))(1+cos(x))(1+cos(x))(1+cos(x)) using the FOIL Method.
Step 2.5.2.1
Apply the distributive property.
sin2(x)+1(1+cos(x))+cos(x)(1+cos(x))sin(x)(1+cos(x))sin2(x)+1(1+cos(x))+cos(x)(1+cos(x))sin(x)(1+cos(x))
Step 2.5.2.2
Apply the distributive property.
sin2(x)+1⋅1+1cos(x)+cos(x)(1+cos(x))sin(x)(1+cos(x))sin2(x)+1⋅1+1cos(x)+cos(x)(1+cos(x))sin(x)(1+cos(x))
Step 2.5.2.3
Apply the distributive property.
sin2(x)+1⋅1+1cos(x)+cos(x)⋅1+cos(x)cos(x)sin(x)(1+cos(x))sin2(x)+1⋅1+1cos(x)+cos(x)⋅1+cos(x)cos(x)sin(x)(1+cos(x))
sin2(x)+1⋅1+1cos(x)+cos(x)⋅1+cos(x)cos(x)sin(x)(1+cos(x))sin2(x)+1⋅1+1cos(x)+cos(x)⋅1+cos(x)cos(x)sin(x)(1+cos(x))
Step 2.5.3
Simplify and combine like terms.
Step 2.5.3.1
Simplify each term.
Step 2.5.3.1.1
Multiply 11 by 11.
sin2(x)+1+1cos(x)+cos(x)⋅1+cos(x)cos(x)sin(x)(1+cos(x))sin2(x)+1+1cos(x)+cos(x)⋅1+cos(x)cos(x)sin(x)(1+cos(x))
Step 2.5.3.1.2
Multiply cos(x)cos(x) by 11.
sin2(x)+1+cos(x)+cos(x)⋅1+cos(x)cos(x)sin(x)(1+cos(x))sin2(x)+1+cos(x)+cos(x)⋅1+cos(x)cos(x)sin(x)(1+cos(x))
Step 2.5.3.1.3
Multiply cos(x)cos(x) by 11.
sin2(x)+1+cos(x)+cos(x)+cos(x)cos(x)sin(x)(1+cos(x))sin2(x)+1+cos(x)+cos(x)+cos(x)cos(x)sin(x)(1+cos(x))
Step 2.5.3.1.4
Multiply cos(x)cos(x)cos(x)cos(x).
Step 2.5.3.1.4.1
Raise cos(x)cos(x) to the power of 11.
sin2(x)+1+cos(x)+cos(x)+cos1(x)cos(x)sin(x)(1+cos(x))sin2(x)+1+cos(x)+cos(x)+cos1(x)cos(x)sin(x)(1+cos(x))
Step 2.5.3.1.4.2
Raise cos(x)cos(x) to the power of 11.
sin2(x)+1+cos(x)+cos(x)+cos1(x)cos1(x)sin(x)(1+cos(x))sin2(x)+1+cos(x)+cos(x)+cos1(x)cos1(x)sin(x)(1+cos(x))
Step 2.5.3.1.4.3
Use the power rule aman=am+naman=am+n to combine exponents.
sin2(x)+1+cos(x)+cos(x)+cos(x)1+1sin(x)(1+cos(x))sin2(x)+1+cos(x)+cos(x)+cos(x)1+1sin(x)(1+cos(x))
Step 2.5.3.1.4.4
Add 11 and 11.
sin2(x)+1+cos(x)+cos(x)+cos2(x)sin(x)(1+cos(x))sin2(x)+1+cos(x)+cos(x)+cos2(x)sin(x)(1+cos(x))
sin2(x)+1+cos(x)+cos(x)+cos2(x)sin(x)(1+cos(x))sin2(x)+1+cos(x)+cos(x)+cos2(x)sin(x)(1+cos(x))
sin2(x)+1+cos(x)+cos(x)+cos2(x)sin(x)(1+cos(x))sin2(x)+1+cos(x)+cos(x)+cos2(x)sin(x)(1+cos(x))
Step 2.5.3.2
Add cos(x)cos(x) and cos(x)cos(x).
sin2(x)+1+2cos(x)+cos2(x)sin(x)(1+cos(x))sin2(x)+1+2cos(x)+cos2(x)sin(x)(1+cos(x))
sin2(x)+1+2cos(x)+cos2(x)sin(x)(1+cos(x))sin2(x)+1+2cos(x)+cos2(x)sin(x)(1+cos(x))
Step 2.5.4
Rewrite sin2(x)+1+2cos(x)+cos2(x)sin2(x)+1+2cos(x)+cos2(x) in a factored form.
Step 2.5.4.1
Regroup terms.
sin2(x)+cos2(x)+1+2cos(x)sin(x)(1+cos(x))sin2(x)+cos2(x)+1+2cos(x)sin(x)(1+cos(x))
Step 2.5.4.2
Apply pythagorean identity.
1+1+2cos(x)sin(x)(1+cos(x))1+1+2cos(x)sin(x)(1+cos(x))
Step 2.5.4.3
Add 11 and 11.
2+2cos(x)sin(x)(1+cos(x))2+2cos(x)sin(x)(1+cos(x))
Step 2.5.4.4
Factor 22 out of 2+2cos(x)2+2cos(x).
Step 2.5.4.4.1
Factor 22 out of 22.
2⋅1+2cos(x)sin(x)(1+cos(x))2⋅1+2cos(x)sin(x)(1+cos(x))
Step 2.5.4.4.2
Factor 22 out of 2⋅1+2cos(x)2⋅1+2cos(x).
2(1+cos(x))sin(x)(1+cos(x))2(1+cos(x))sin(x)(1+cos(x))
2(1+cos(x))sin(x)(1+cos(x))2(1+cos(x))sin(x)(1+cos(x))
2(1+cos(x))sin(x)(1+cos(x))2(1+cos(x))sin(x)(1+cos(x))
2(1+cos(x))sin(x)(1+cos(x))2(1+cos(x))sin(x)(1+cos(x))
Step 2.6
Cancel the common factor of 1+cos(x)1+cos(x).
Step 2.6.1
Cancel the common factor.
2(1+cos(x))sin(x)(1+cos(x))
Step 2.6.2
Rewrite the expression.
2sin(x)
2sin(x)
2sin(x)
Step 3
Rewrite 2sin(x) as 2csc(x).
2csc(x)
Step 4
Because the two sides have been shown to be equivalent, the equation is an identity.
sin(x)1+cos(x)+1+cos(x)sin(x)=2csc(x) is an identity