Trigonometry Examples

Find the Other Trig Values in Quadrant II sec(theta)=-2
sec(θ)=-2sec(θ)=2
Step 1
Use the definition of secant to find the known sides of the unit circle right triangle. The quadrant determines the sign on each of the values.
sec(θ)=hypotenuseadjacentsec(θ)=hypotenuseadjacent
Step 2
Find the opposite side of the unit circle triangle. Since the adjacent side and hypotenuse are known, use the Pythagorean theorem to find the remaining side.
Opposite=hypotenuse2-adjacent2Opposite=hypotenuse2adjacent2
Step 3
Replace the known values in the equation.
Opposite=(2)2-(-1)2Opposite=(2)2(1)2
Step 4
Simplify inside the radical.
Tap for more steps...
Step 4.1
Raise 22 to the power of 22.
Opposite =4-(-1)2=4(1)2
Step 4.2
Multiply -11 by (-1)2(1)2 by adding the exponents.
Tap for more steps...
Step 4.2.1
Multiply -11 by (-1)2(1)2.
Tap for more steps...
Step 4.2.1.1
Raise -11 to the power of 11.
Opposite =4+(-1)(-1)2=4+(1)(1)2
Step 4.2.1.2
Use the power rule aman=am+naman=am+n to combine exponents.
Opposite =4+(-1)1+2=4+(1)1+2
Opposite =4+(-1)1+2=4+(1)1+2
Step 4.2.2
Add 11 and 22.
Opposite =4+(-1)3=4+(1)3
Opposite =4+(-1)3=4+(1)3
Step 4.3
Raise -11 to the power of 33.
Opposite =4-1=41
Step 4.4
Subtract 11 from 44.
Opposite =3=3
Opposite =3=3
Step 5
Find the value of sine.
Tap for more steps...
Step 5.1
Use the definition of sine to find the value of sin(θ)sin(θ).
sin(θ)=opphypsin(θ)=opphyp
Step 5.2
Substitute in the known values.
sin(θ)=32sin(θ)=32
sin(θ)=32sin(θ)=32
Step 6
Find the value of cosine.
Tap for more steps...
Step 6.1
Use the definition of cosine to find the value of cos(θ)cos(θ).
cos(θ)=adjhypcos(θ)=adjhyp
Step 6.2
Substitute in the known values.
cos(θ)=-12cos(θ)=12
Step 6.3
Move the negative in front of the fraction.
cos(θ)=-12cos(θ)=12
cos(θ)=-12cos(θ)=12
Step 7
Find the value of tangent.
Tap for more steps...
Step 7.1
Use the definition of tangent to find the value of tan(θ)tan(θ).
tan(θ)=oppadjtan(θ)=oppadj
Step 7.2
Substitute in the known values.
tan(θ)=3-1tan(θ)=31
Step 7.3
Simplify the value of tan(θ)tan(θ).
Tap for more steps...
Step 7.3.1
Move the negative one from the denominator of 3-131.
tan(θ)=-13tan(θ)=13
Step 7.3.2
Rewrite -1313 as -33.
tan(θ)=-3tan(θ)=3
tan(θ)=-3tan(θ)=3
tan(θ)=-3tan(θ)=3
Step 8
Find the value of cotangent.
Tap for more steps...
Step 8.1
Use the definition of cotangent to find the value of cot(θ)cot(θ).
cot(θ)=adjoppcot(θ)=adjopp
Step 8.2
Substitute in the known values.
cot(θ)=-13cot(θ)=13
Step 8.3
Simplify the value of cot(θ)cot(θ).
Tap for more steps...
Step 8.3.1
Move the negative in front of the fraction.
cot(θ)=-13cot(θ)=13
Step 8.3.2
Multiply 1313 by 3333.
cot(θ)=-(1333)cot(θ)=(1333)
Step 8.3.3
Combine and simplify the denominator.
Tap for more steps...
Step 8.3.3.1
Multiply 1313 by 3333.
cot(θ)=-333cot(θ)=333
Step 8.3.3.2
Raise 33 to the power of 11.
cot(θ)=-333cot(θ)=333
Step 8.3.3.3
Raise 33 to the power of 11.
cot(θ)=-333cot(θ)=333
Step 8.3.3.4
Use the power rule aman=am+naman=am+n to combine exponents.
cot(θ)=-331+1cot(θ)=331+1
Step 8.3.3.5
Add 11 and 11.
cot(θ)=-332cot(θ)=332
Step 8.3.3.6
Rewrite 3232 as 33.
Tap for more steps...
Step 8.3.3.6.1
Use nax=axnnax=axn to rewrite 33 as 312312.
cot(θ)=-3(312)2cot(θ)=3(312)2
Step 8.3.3.6.2
Apply the power rule and multiply exponents, (am)n=amn(am)n=amn.
cot(θ)=-33122cot(θ)=33122
Step 8.3.3.6.3
Combine 1212 and 22.
cot(θ)=-3322cot(θ)=3322
Step 8.3.3.6.4
Cancel the common factor of 22.
Tap for more steps...
Step 8.3.3.6.4.1
Cancel the common factor.
cot(θ)=-3322
Step 8.3.3.6.4.2
Rewrite the expression.
cot(θ)=-33
cot(θ)=-33
Step 8.3.3.6.5
Evaluate the exponent.
cot(θ)=-33
cot(θ)=-33
cot(θ)=-33
cot(θ)=-33
cot(θ)=-33
Step 9
Find the value of cosecant.
Tap for more steps...
Step 9.1
Use the definition of cosecant to find the value of csc(θ).
csc(θ)=hypopp
Step 9.2
Substitute in the known values.
csc(θ)=23
Step 9.3
Simplify the value of csc(θ).
Tap for more steps...
Step 9.3.1
Multiply 23 by 33.
csc(θ)=2333
Step 9.3.2
Combine and simplify the denominator.
Tap for more steps...
Step 9.3.2.1
Multiply 23 by 33.
csc(θ)=2333
Step 9.3.2.2
Raise 3 to the power of 1.
csc(θ)=2333
Step 9.3.2.3
Raise 3 to the power of 1.
csc(θ)=2333
Step 9.3.2.4
Use the power rule aman=am+n to combine exponents.
csc(θ)=2331+1
Step 9.3.2.5
Add 1 and 1.
csc(θ)=2332
Step 9.3.2.6
Rewrite 32 as 3.
Tap for more steps...
Step 9.3.2.6.1
Use nax=axn to rewrite 3 as 312.
csc(θ)=23(312)2
Step 9.3.2.6.2
Apply the power rule and multiply exponents, (am)n=amn.
csc(θ)=233122
Step 9.3.2.6.3
Combine 12 and 2.
csc(θ)=23322
Step 9.3.2.6.4
Cancel the common factor of 2.
Tap for more steps...
Step 9.3.2.6.4.1
Cancel the common factor.
csc(θ)=23322
Step 9.3.2.6.4.2
Rewrite the expression.
csc(θ)=233
csc(θ)=233
Step 9.3.2.6.5
Evaluate the exponent.
csc(θ)=233
csc(θ)=233
csc(θ)=233
csc(θ)=233
csc(θ)=233
Step 10
This is the solution to each trig value.
sin(θ)=32
cos(θ)=-12
tan(θ)=-3
cot(θ)=-33
sec(θ)=-2
csc(θ)=233
 [x2  12  π  xdx ]