Enter a problem...
Trigonometry Examples
sec(θ)=-2sec(θ)=−2
Step 1
Use the definition of secant to find the known sides of the unit circle right triangle. The quadrant determines the sign on each of the values.
sec(θ)=hypotenuseadjacentsec(θ)=hypotenuseadjacent
Step 2
Find the opposite side of the unit circle triangle. Since the adjacent side and hypotenuse are known, use the Pythagorean theorem to find the remaining side.
Opposite=√hypotenuse2-adjacent2Opposite=√hypotenuse2−adjacent2
Step 3
Replace the known values in the equation.
Opposite=√(2)2-(-1)2Opposite=√(2)2−(−1)2
Step 4
Step 4.1
Raise 22 to the power of 22.
Opposite =√4-(-1)2=√4−(−1)2
Step 4.2
Multiply -1−1 by (-1)2(−1)2 by adding the exponents.
Step 4.2.1
Multiply -1−1 by (-1)2(−1)2.
Step 4.2.1.1
Raise -1−1 to the power of 11.
Opposite =√4+(-1)(-1)2=√4+(−1)(−1)2
Step 4.2.1.2
Use the power rule aman=am+naman=am+n to combine exponents.
Opposite =√4+(-1)1+2=√4+(−1)1+2
Opposite =√4+(-1)1+2=√4+(−1)1+2
Step 4.2.2
Add 11 and 22.
Opposite =√4+(-1)3=√4+(−1)3
Opposite =√4+(-1)3=√4+(−1)3
Step 4.3
Raise -1−1 to the power of 33.
Opposite =√4-1=√4−1
Step 4.4
Subtract 11 from 44.
Opposite =√3=√3
Opposite =√3=√3
Step 5
Step 5.1
Use the definition of sine to find the value of sin(θ)sin(θ).
sin(θ)=opphypsin(θ)=opphyp
Step 5.2
Substitute in the known values.
sin(θ)=√32sin(θ)=√32
sin(θ)=√32sin(θ)=√32
Step 6
Step 6.1
Use the definition of cosine to find the value of cos(θ)cos(θ).
cos(θ)=adjhypcos(θ)=adjhyp
Step 6.2
Substitute in the known values.
cos(θ)=-12cos(θ)=−12
Step 6.3
Move the negative in front of the fraction.
cos(θ)=-12cos(θ)=−12
cos(θ)=-12cos(θ)=−12
Step 7
Step 7.1
Use the definition of tangent to find the value of tan(θ)tan(θ).
tan(θ)=oppadjtan(θ)=oppadj
Step 7.2
Substitute in the known values.
tan(θ)=√3-1tan(θ)=√3−1
Step 7.3
Simplify the value of tan(θ)tan(θ).
Step 7.3.1
Move the negative one from the denominator of √3-1√3−1.
tan(θ)=-1⋅√3tan(θ)=−1⋅√3
Step 7.3.2
Rewrite -1⋅√3−1⋅√3 as -√3−√3.
tan(θ)=-√3tan(θ)=−√3
tan(θ)=-√3tan(θ)=−√3
tan(θ)=-√3tan(θ)=−√3
Step 8
Step 8.1
Use the definition of cotangent to find the value of cot(θ)cot(θ).
cot(θ)=adjoppcot(θ)=adjopp
Step 8.2
Substitute in the known values.
cot(θ)=-1√3cot(θ)=−1√3
Step 8.3
Simplify the value of cot(θ)cot(θ).
Step 8.3.1
Move the negative in front of the fraction.
cot(θ)=-1√3cot(θ)=−1√3
Step 8.3.2
Multiply 1√31√3 by √3√3√3√3.
cot(θ)=-(1√3⋅√3√3)cot(θ)=−(1√3⋅√3√3)
Step 8.3.3
Combine and simplify the denominator.
Step 8.3.3.1
Multiply 1√31√3 by √3√3√3√3.
cot(θ)=-√3√3√3cot(θ)=−√3√3√3
Step 8.3.3.2
Raise √3√3 to the power of 11.
cot(θ)=-√3√3√3cot(θ)=−√3√3√3
Step 8.3.3.3
Raise √3√3 to the power of 11.
cot(θ)=-√3√3√3cot(θ)=−√3√3√3
Step 8.3.3.4
Use the power rule aman=am+naman=am+n to combine exponents.
cot(θ)=-√3√31+1cot(θ)=−√3√31+1
Step 8.3.3.5
Add 11 and 11.
cot(θ)=-√3√32cot(θ)=−√3√32
Step 8.3.3.6
Rewrite √32√32 as 33.
Step 8.3.3.6.1
Use n√ax=axnn√ax=axn to rewrite √3√3 as 312312.
cot(θ)=-√3(312)2cot(θ)=−√3(312)2
Step 8.3.3.6.2
Apply the power rule and multiply exponents, (am)n=amn(am)n=amn.
cot(θ)=-√3312⋅2cot(θ)=−√3312⋅2
Step 8.3.3.6.3
Combine 1212 and 22.
cot(θ)=-√3322cot(θ)=−√3322
Step 8.3.3.6.4
Cancel the common factor of 22.
Step 8.3.3.6.4.1
Cancel the common factor.
cot(θ)=-√3322
Step 8.3.3.6.4.2
Rewrite the expression.
cot(θ)=-√33
cot(θ)=-√33
Step 8.3.3.6.5
Evaluate the exponent.
cot(θ)=-√33
cot(θ)=-√33
cot(θ)=-√33
cot(θ)=-√33
cot(θ)=-√33
Step 9
Step 9.1
Use the definition of cosecant to find the value of csc(θ).
csc(θ)=hypopp
Step 9.2
Substitute in the known values.
csc(θ)=2√3
Step 9.3
Simplify the value of csc(θ).
Step 9.3.1
Multiply 2√3 by √3√3.
csc(θ)=2√3⋅√3√3
Step 9.3.2
Combine and simplify the denominator.
Step 9.3.2.1
Multiply 2√3 by √3√3.
csc(θ)=2√3√3√3
Step 9.3.2.2
Raise √3 to the power of 1.
csc(θ)=2√3√3√3
Step 9.3.2.3
Raise √3 to the power of 1.
csc(θ)=2√3√3√3
Step 9.3.2.4
Use the power rule aman=am+n to combine exponents.
csc(θ)=2√3√31+1
Step 9.3.2.5
Add 1 and 1.
csc(θ)=2√3√32
Step 9.3.2.6
Rewrite √32 as 3.
Step 9.3.2.6.1
Use n√ax=axn to rewrite √3 as 312.
csc(θ)=2√3(312)2
Step 9.3.2.6.2
Apply the power rule and multiply exponents, (am)n=amn.
csc(θ)=2√3312⋅2
Step 9.3.2.6.3
Combine 12 and 2.
csc(θ)=2√3322
Step 9.3.2.6.4
Cancel the common factor of 2.
Step 9.3.2.6.4.1
Cancel the common factor.
csc(θ)=2√3322
Step 9.3.2.6.4.2
Rewrite the expression.
csc(θ)=2√33
csc(θ)=2√33
Step 9.3.2.6.5
Evaluate the exponent.
csc(θ)=2√33
csc(θ)=2√33
csc(θ)=2√33
csc(θ)=2√33
csc(θ)=2√33
Step 10
This is the solution to each trig value.
sin(θ)=√32
cos(θ)=-12
tan(θ)=-√3
cot(θ)=-√33
sec(θ)=-2
csc(θ)=2√33