Enter a problem...
Trigonometry Examples
cos2(x)-sin2(x)cos2(x)−sin2(x)
Step 1
Since both terms are perfect squares, factor using the difference of squares formula, a2-b2=(a+b)(a-b)a2−b2=(a+b)(a−b) where a=cos(x)a=cos(x) and b=sin(x)b=sin(x).
(cos(x)+sin(x))(cos(x)-sin(x))(cos(x)+sin(x))(cos(x)−sin(x))
Step 2
Step 2.1
Apply the distributive property.
cos(x)(cos(x)-sin(x))+sin(x)(cos(x)-sin(x))cos(x)(cos(x)−sin(x))+sin(x)(cos(x)−sin(x))
Step 2.2
Apply the distributive property.
cos(x)cos(x)+cos(x)(-sin(x))+sin(x)(cos(x)-sin(x))cos(x)cos(x)+cos(x)(−sin(x))+sin(x)(cos(x)−sin(x))
Step 2.3
Apply the distributive property.
cos(x)cos(x)+cos(x)(-sin(x))+sin(x)cos(x)+sin(x)(-sin(x))cos(x)cos(x)+cos(x)(−sin(x))+sin(x)cos(x)+sin(x)(−sin(x))
cos(x)cos(x)+cos(x)(-sin(x))+sin(x)cos(x)+sin(x)(-sin(x))cos(x)cos(x)+cos(x)(−sin(x))+sin(x)cos(x)+sin(x)(−sin(x))
Step 3
Step 3.1
Combine the opposite terms in cos(x)cos(x)+cos(x)(-sin(x))+sin(x)cos(x)+sin(x)(-sin(x))cos(x)cos(x)+cos(x)(−sin(x))+sin(x)cos(x)+sin(x)(−sin(x)).
Step 3.1.1
Reorder the factors in the terms cos(x)(-sin(x))cos(x)(−sin(x)) and sin(x)cos(x)sin(x)cos(x).
cos(x)cos(x)-cos(x)sin(x)+cos(x)sin(x)+sin(x)(-sin(x))cos(x)cos(x)−cos(x)sin(x)+cos(x)sin(x)+sin(x)(−sin(x))
Step 3.1.2
Add -cos(x)sin(x)−cos(x)sin(x) and cos(x)sin(x)cos(x)sin(x).
cos(x)cos(x)+0+sin(x)(-sin(x))cos(x)cos(x)+0+sin(x)(−sin(x))
Step 3.1.3
Add cos(x)cos(x)cos(x)cos(x) and 00.
cos(x)cos(x)+sin(x)(-sin(x))cos(x)cos(x)+sin(x)(−sin(x))
cos(x)cos(x)+sin(x)(-sin(x))cos(x)cos(x)+sin(x)(−sin(x))
Step 3.2
Simplify each term.
Step 3.2.1
Multiply cos(x)cos(x)cos(x)cos(x).
Step 3.2.1.1
Raise cos(x)cos(x) to the power of 11.
cos1(x)cos(x)+sin(x)(-sin(x))cos1(x)cos(x)+sin(x)(−sin(x))
Step 3.2.1.2
Raise cos(x)cos(x) to the power of 11.
cos1(x)cos1(x)+sin(x)(-sin(x))cos1(x)cos1(x)+sin(x)(−sin(x))
Step 3.2.1.3
Use the power rule aman=am+naman=am+n to combine exponents.
cos(x)1+1+sin(x)(-sin(x))cos(x)1+1+sin(x)(−sin(x))
Step 3.2.1.4
Add 11 and 11.
cos2(x)+sin(x)(-sin(x))cos2(x)+sin(x)(−sin(x))
cos2(x)+sin(x)(-sin(x))cos2(x)+sin(x)(−sin(x))
Step 3.2.2
Rewrite using the commutative property of multiplication.
cos2(x)-sin(x)sin(x)cos2(x)−sin(x)sin(x)
Step 3.2.3
Multiply -sin(x)sin(x)−sin(x)sin(x).
Step 3.2.3.1
Raise sin(x)sin(x) to the power of 11.
cos2(x)-(sin1(x)sin(x))cos2(x)−(sin1(x)sin(x))
Step 3.2.3.2
Raise sin(x)sin(x) to the power of 11.
cos2(x)-(sin1(x)sin1(x))cos2(x)−(sin1(x)sin1(x))
Step 3.2.3.3
Use the power rule aman=am+naman=am+n to combine exponents.
cos2(x)-sin(x)1+1cos2(x)−sin(x)1+1
Step 3.2.3.4
Add 11 and 11.
cos2(x)-sin2(x)cos2(x)−sin2(x)
cos2(x)-sin2(x)cos2(x)−sin2(x)
cos2(x)-sin2(x)cos2(x)−sin2(x)
cos2(x)-sin2(x)cos2(x)−sin2(x)
Step 4
Apply the cosine double-angle identity.
cos(2x)cos(2x)