Trigonometry Examples

Simplify cos(theta)^2-sin(theta)^2
cos2(θ)-sin2(θ)cos2(θ)sin2(θ)
Step 1
Since both terms are perfect squares, factor using the difference of squares formula, a2-b2=(a+b)(a-b)a2b2=(a+b)(ab) where a=cos(θ)a=cos(θ) and b=sin(θ)b=sin(θ).
(cos(θ)+sin(θ))(cos(θ)-sin(θ))(cos(θ)+sin(θ))(cos(θ)sin(θ))
Step 2
Expand (cos(θ)+sin(θ))(cos(θ)-sin(θ))(cos(θ)+sin(θ))(cos(θ)sin(θ)) using the FOIL Method.
Tap for more steps...
Step 2.1
Apply the distributive property.
cos(θ)(cos(θ)-sin(θ))+sin(θ)(cos(θ)-sin(θ))cos(θ)(cos(θ)sin(θ))+sin(θ)(cos(θ)sin(θ))
Step 2.2
Apply the distributive property.
cos(θ)cos(θ)+cos(θ)(-sin(θ))+sin(θ)(cos(θ)-sin(θ))cos(θ)cos(θ)+cos(θ)(sin(θ))+sin(θ)(cos(θ)sin(θ))
Step 2.3
Apply the distributive property.
cos(θ)cos(θ)+cos(θ)(-sin(θ))+sin(θ)cos(θ)+sin(θ)(-sin(θ))cos(θ)cos(θ)+cos(θ)(sin(θ))+sin(θ)cos(θ)+sin(θ)(sin(θ))
cos(θ)cos(θ)+cos(θ)(-sin(θ))+sin(θ)cos(θ)+sin(θ)(-sin(θ))cos(θ)cos(θ)+cos(θ)(sin(θ))+sin(θ)cos(θ)+sin(θ)(sin(θ))
Step 3
Simplify terms.
Tap for more steps...
Step 3.1
Combine the opposite terms in cos(θ)cos(θ)+cos(θ)(-sin(θ))+sin(θ)cos(θ)+sin(θ)(-sin(θ))cos(θ)cos(θ)+cos(θ)(sin(θ))+sin(θ)cos(θ)+sin(θ)(sin(θ)).
Tap for more steps...
Step 3.1.1
Reorder the factors in the terms cos(θ)(-sin(θ))cos(θ)(sin(θ)) and sin(θ)cos(θ)sin(θ)cos(θ).
cos(θ)cos(θ)-cos(θ)sin(θ)+cos(θ)sin(θ)+sin(θ)(-sin(θ))cos(θ)cos(θ)cos(θ)sin(θ)+cos(θ)sin(θ)+sin(θ)(sin(θ))
Step 3.1.2
Add -cos(θ)sin(θ)cos(θ)sin(θ) and cos(θ)sin(θ)cos(θ)sin(θ).
cos(θ)cos(θ)+0+sin(θ)(-sin(θ))cos(θ)cos(θ)+0+sin(θ)(sin(θ))
Step 3.1.3
Add cos(θ)cos(θ)cos(θ)cos(θ) and 00.
cos(θ)cos(θ)+sin(θ)(-sin(θ))cos(θ)cos(θ)+sin(θ)(sin(θ))
cos(θ)cos(θ)+sin(θ)(-sin(θ))cos(θ)cos(θ)+sin(θ)(sin(θ))
Step 3.2
Simplify each term.
Tap for more steps...
Step 3.2.1
Multiply cos(θ)cos(θ)cos(θ)cos(θ).
Tap for more steps...
Step 3.2.1.1
Raise cos(θ)cos(θ) to the power of 11.
cos1(θ)cos(θ)+sin(θ)(-sin(θ))cos1(θ)cos(θ)+sin(θ)(sin(θ))
Step 3.2.1.2
Raise cos(θ)cos(θ) to the power of 11.
cos1(θ)cos1(θ)+sin(θ)(-sin(θ))cos1(θ)cos1(θ)+sin(θ)(sin(θ))
Step 3.2.1.3
Use the power rule aman=am+naman=am+n to combine exponents.
cos(θ)1+1+sin(θ)(-sin(θ))cos(θ)1+1+sin(θ)(sin(θ))
Step 3.2.1.4
Add 11 and 11.
cos2(θ)+sin(θ)(-sin(θ))cos2(θ)+sin(θ)(sin(θ))
cos2(θ)+sin(θ)(-sin(θ))cos2(θ)+sin(θ)(sin(θ))
Step 3.2.2
Rewrite using the commutative property of multiplication.
cos2(θ)-sin(θ)sin(θ)cos2(θ)sin(θ)sin(θ)
Step 3.2.3
Multiply -sin(θ)sin(θ)sin(θ)sin(θ).
Tap for more steps...
Step 3.2.3.1
Raise sin(θ)sin(θ) to the power of 11.
cos2(θ)-(sin1(θ)sin(θ))cos2(θ)(sin1(θ)sin(θ))
Step 3.2.3.2
Raise sin(θ)sin(θ) to the power of 11.
cos2(θ)-(sin1(θ)sin1(θ))cos2(θ)(sin1(θ)sin1(θ))
Step 3.2.3.3
Use the power rule aman=am+naman=am+n to combine exponents.
cos2(θ)-sin(θ)1+1cos2(θ)sin(θ)1+1
Step 3.2.3.4
Add 11 and 11.
cos2(θ)-sin2(θ)cos2(θ)sin2(θ)
cos2(θ)-sin2(θ)cos2(θ)sin2(θ)
cos2(θ)-sin2(θ)cos2(θ)sin2(θ)
cos2(θ)-sin2(θ)cos2(θ)sin2(θ)
Step 4
Apply the cosine double-angle identity.
cos(2θ)cos(2θ)
(
(
)
)
|
|
[
[
]
]
°
°
7
7
8
8
9
9
θ
θ
4
4
5
5
6
6
/
/
^
^
×
×
>
>
π
π
1
1
2
2
3
3
-
-
+
+
÷
÷
<
<
,
,
0
0
.
.
%
%
=
=
 [x2  12  π  xdx ]  x2  12  π  xdx