Trigonometry Examples

Verify the Identity cos(x)^2-sin(x)^2=1-2sin(x)^2
cos2(x)-sin2(x)=1-2sin2(x)cos2(x)sin2(x)=12sin2(x)
Step 1
Start on the left side.
cos2(x)-sin2(x)
Step 2
Apply Pythagorean identity in reverse.
1-sin2(x)-sin2(x)
Step 3
Subtract sin(x)2 from -sin(x)2.
1-2sin2(x)
Step 4
Because the two sides have been shown to be equivalent, the equation is an identity.
cos2(x)-sin2(x)=1-2sin2(x) is an identity
 [x2  12  π  xdx ]