Enter a problem...
Trigonometry Examples
sin(195)sin(195)
Step 1
Apply the reference angle by finding the angle with equivalent trig values in the first quadrant. Make the expression negative because sine is negative in the third quadrant.
-sin(15)−sin(15)
Step 2
Split 1515 into two angles where the values of the six trigonometric functions are known.
-sin(45-30)−sin(45−30)
Step 3
Separate negation.
-sin(45-(30))−sin(45−(30))
Step 4
Apply the difference of angles identity.
-(sin(45)cos(30)-cos(45)sin(30))−(sin(45)cos(30)−cos(45)sin(30))
Step 5
The exact value of sin(45)sin(45) is √22√22.
-(√22cos(30)-cos(45)sin(30))−(√22cos(30)−cos(45)sin(30))
Step 6
The exact value of cos(30)cos(30) is √32√32.
-(√22⋅√32-cos(45)sin(30))−(√22⋅√32−cos(45)sin(30))
Step 7
The exact value of cos(45)cos(45) is √22√22.
-(√22⋅√32-√22sin(30))−(√22⋅√32−√22sin(30))
Step 8
The exact value of sin(30)sin(30) is 1212.
-(√22⋅√32-√22⋅12)−(√22⋅√32−√22⋅12)
Step 9
Step 9.1
Simplify each term.
Step 9.1.1
Multiply √22⋅√32√22⋅√32.
Step 9.1.1.1
Multiply √22√22 by √32√32.
-(√2√32⋅2-√22⋅12)−(√2√32⋅2−√22⋅12)
Step 9.1.1.2
Combine using the product rule for radicals.
-(√2⋅32⋅2-√22⋅12)
Step 9.1.1.3
Multiply 2 by 3.
-(√62⋅2-√22⋅12)
Step 9.1.1.4
Multiply 2 by 2.
-(√64-√22⋅12)
-(√64-√22⋅12)
Step 9.1.2
Multiply -√22⋅12.
Step 9.1.2.1
Multiply 12 by √22.
-(√64-√22⋅2)
Step 9.1.2.2
Multiply 2 by 2.
-(√64-√24)
-(√64-√24)
-(√64-√24)
Step 9.2
Combine the numerators over the common denominator.
-√6-√24
-√6-√24
Step 10
The result can be shown in multiple forms.
Exact Form:
-√6-√24
Decimal Form:
-0.25881904…