Trigonometry Examples

Find the Exact Value sin(195)
sin(195)sin(195)
Step 1
Apply the reference angle by finding the angle with equivalent trig values in the first quadrant. Make the expression negative because sine is negative in the third quadrant.
-sin(15)sin(15)
Step 2
Split 1515 into two angles where the values of the six trigonometric functions are known.
-sin(45-30)sin(4530)
Step 3
Separate negation.
-sin(45-(30))sin(45(30))
Step 4
Apply the difference of angles identity.
-(sin(45)cos(30)-cos(45)sin(30))(sin(45)cos(30)cos(45)sin(30))
Step 5
The exact value of sin(45)sin(45) is 2222.
-(22cos(30)-cos(45)sin(30))(22cos(30)cos(45)sin(30))
Step 6
The exact value of cos(30)cos(30) is 3232.
-(2232-cos(45)sin(30))(2232cos(45)sin(30))
Step 7
The exact value of cos(45)cos(45) is 2222.
-(2232-22sin(30))(223222sin(30))
Step 8
The exact value of sin(30)sin(30) is 1212.
-(2232-2212)(22322212)
Step 9
Simplify -(2232-2212)(22322212).
Tap for more steps...
Step 9.1
Simplify each term.
Tap for more steps...
Step 9.1.1
Multiply 22322232.
Tap for more steps...
Step 9.1.1.1
Multiply 2222 by 3232.
-(2322-2212)(23222212)
Step 9.1.1.2
Combine using the product rule for radicals.
-(2322-2212)
Step 9.1.1.3
Multiply 2 by 3.
-(622-2212)
Step 9.1.1.4
Multiply 2 by 2.
-(64-2212)
-(64-2212)
Step 9.1.2
Multiply -2212.
Tap for more steps...
Step 9.1.2.1
Multiply 12 by 22.
-(64-222)
Step 9.1.2.2
Multiply 2 by 2.
-(64-24)
-(64-24)
-(64-24)
Step 9.2
Combine the numerators over the common denominator.
-6-24
-6-24
Step 10
The result can be shown in multiple forms.
Exact Form:
-6-24
Decimal Form:
-0.25881904
 [x2  12  π  xdx ]