Enter a problem...
Trigonometry Examples
tan(π8)
Step 1
Rewrite π8 as an angle where the values of the six trigonometric functions are known divided by 2.
tan(π42)
Step 2
Apply the tangent half-angle identity.
±√1-cos(π4)1+cos(π4)
Step 3
Change the ± to + because tangent is positive in the first quadrant.
√1-cos(π4)1+cos(π4)
Step 4
Step 4.1
The exact value of cos(π4) is √22.
√1-√221+cos(π4)
Step 4.2
Write 1 as a fraction with a common denominator.
√22-√221+cos(π4)
Step 4.3
Combine the numerators over the common denominator.
√2-√221+cos(π4)
Step 4.4
The exact value of cos(π4) is √22.
√2-√221+√22
Step 4.5
Write 1 as a fraction with a common denominator.
√2-√2222+√22
Step 4.6
Combine the numerators over the common denominator.
√2-√222+√22
Step 4.7
Multiply the numerator by the reciprocal of the denominator.
√2-√22⋅22+√2
Step 4.8
Cancel the common factor of 2.
Step 4.8.1
Cancel the common factor.
√2-√22⋅22+√2
Step 4.8.2
Rewrite the expression.
√(2-√2)12+√2
√(2-√2)12+√2
Step 4.9
Multiply 12+√2 by 2-√22-√2.
√(2-√2)(12+√2⋅2-√22-√2)
Step 4.10
Multiply 12+√2 by 2-√22-√2.
√(2-√2)2-√2(2+√2)(2-√2)
Step 4.11
Expand the denominator using the FOIL method.
√(2-√2)2-√24-2√2+√2⋅2-√22
Step 4.12
Simplify.
√(2-√2)2-√22
Step 4.13
Apply the distributive property.
√22-√22-√22-√22
Step 4.14
Cancel the common factor of 2.
Step 4.14.1
Cancel the common factor.
√22-√22-√22-√22
Step 4.14.2
Rewrite the expression.
√2-√2-√22-√22
√2-√2-√22-√22
Step 4.15
Combine 2-√22 and √2.
√2-√2-(2-√2)√22
Step 4.16
Simplify each term.
Step 4.16.1
Apply the distributive property.
√2-√2-2√2-√2√22
Step 4.16.2
Multiply -√2√2.
Step 4.16.2.1
Raise √2 to the power of 1.
√2-√2-2√2-(√21√2)2
Step 4.16.2.2
Raise √2 to the power of 1.
√2-√2-2√2-(√21√21)2
Step 4.16.2.3
Use the power rule aman=am+n to combine exponents.
√2-√2-2√2-√21+12
Step 4.16.2.4
Add 1 and 1.
√2-√2-2√2-√222
√2-√2-2√2-√222
Step 4.16.3
Simplify each term.
Step 4.16.3.1
Rewrite √22 as 2.
Step 4.16.3.1.1
Use n√ax=axn to rewrite √2 as 212.
√2-√2-2√2-(212)22
Step 4.16.3.1.2
Apply the power rule and multiply exponents, (am)n=amn.
√2-√2-2√2-212⋅22
Step 4.16.3.1.3
Combine 12 and 2.
√2-√2-2√2-2222
Step 4.16.3.1.4
Cancel the common factor of 2.
Step 4.16.3.1.4.1
Cancel the common factor.
√2-√2-2√2-2222
Step 4.16.3.1.4.2
Rewrite the expression.
√2-√2-2√2-212
√2-√2-2√2-212
Step 4.16.3.1.5
Evaluate the exponent.
√2-√2-2√2-1⋅22
√2-√2-2√2-1⋅22
Step 4.16.3.2
Multiply -1 by 2.
√2-√2-2√2-22
√2-√2-2√2-22
Step 4.16.4
Cancel the common factor of 2√2-2 and 2.
Step 4.16.4.1
Factor 2 out of 2√2.
√2-√2-2(√2)-22
Step 4.16.4.2
Factor 2 out of -2.
√2-√2-2(√2)+2⋅-12
Step 4.16.4.3
Factor 2 out of 2(√2)+2(-1).
√2-√2-2(√2-1)2
Step 4.16.4.4
Cancel the common factors.
Step 4.16.4.4.1
Factor 2 out of 2.
√2-√2-2(√2-1)2(1)
Step 4.16.4.4.2
Cancel the common factor.
√2-√2-2(√2-1)2⋅1
Step 4.16.4.4.3
Rewrite the expression.
√2-√2-√2-11
Step 4.16.4.4.4
Divide √2-1 by 1.
√2-√2-(√2-1)
√2-√2-(√2-1)
√2-√2-(√2-1)
Step 4.16.5
Apply the distributive property.
√2-√2-√2--1
Step 4.16.6
Multiply -1 by -1.
√2-√2-√2+1
√2-√2-√2+1
Step 4.17
Add 2 and 1.
√3-√2-√2
Step 4.18
Subtract √2 from -√2.
√3-2√2
√3-2√2
Step 5
The result can be shown in multiple forms.
Exact Form:
√3-2√2
Decimal Form:
0.41421356…