Trigonometry Examples

Verify the Identity (csc(a)+1)/(csc(a)-1)=(1+sin(a))/(1-sin(a))
csc(a)+1csc(a)-1=1+sin(a)1-sin(a)
Step 1
Start on the left side.
csc(a)+1csc(a)-1
Step 2
Convert to sines and cosines.
Tap for more steps...
Step 2.1
Apply the reciprocal identity to csc(a).
1sin(a)+1csc(a)-1
Step 2.2
Apply the reciprocal identity to csc(a).
1sin(a)+11sin(a)-1
1sin(a)+11sin(a)-1
Step 3
Simplify.
Tap for more steps...
Step 3.1
Multiply the numerator and denominator of the fraction by sin(a).
Tap for more steps...
Step 3.1.1
Multiply 1sin(a)+11sin(a)-1 by sin(a)sin(a).
sin(a)sin(a)1sin(a)+11sin(a)-1
Step 3.1.2
Combine.
sin(a)(1sin(a)+1)sin(a)(1sin(a)-1)
sin(a)(1sin(a)+1)sin(a)(1sin(a)-1)
Step 3.2
Apply the distributive property.
sin(a)1sin(a)+sin(a)1sin(a)1sin(a)+sin(a)-1
Step 3.3
Simplify by cancelling.
Tap for more steps...
Step 3.3.1
Cancel the common factor of sin(a).
Tap for more steps...
Step 3.3.1.1
Cancel the common factor.
sin(a)1sin(a)+sin(a)1sin(a)1sin(a)+sin(a)-1
Step 3.3.1.2
Rewrite the expression.
1+sin(a)1sin(a)1sin(a)+sin(a)-1
1+sin(a)1sin(a)1sin(a)+sin(a)-1
Step 3.3.2
Cancel the common factor of sin(a).
Tap for more steps...
Step 3.3.2.1
Cancel the common factor.
1+sin(a)1sin(a)1sin(a)+sin(a)-1
Step 3.3.2.2
Rewrite the expression.
1+sin(a)11+sin(a)-1
1+sin(a)11+sin(a)-1
1+sin(a)11+sin(a)-1
Step 3.4
Multiply sin(a) by 1.
1+sin(a)1+sin(a)-1
Step 3.5
Simplify the denominator.
1+sin(a)1-sin(a)
1+sin(a)1-sin(a)
Step 4
Because the two sides have been shown to be equivalent, the equation is an identity.
csc(a)+1csc(a)-1=1+sin(a)1-sin(a) is an identity
 [x2  12  π  xdx ]