Enter a problem...
Trigonometry Examples
Step 1
Step 1.1
Let . Substitute for all occurrences of .
Step 1.2
Factor using the AC method.
Step 1.2.1
Consider the form . Find a pair of integers whose product is and whose sum is . In this case, whose product is and whose sum is .
Step 1.2.2
Write the factored form using these integers.
Step 1.3
Replace all occurrences of with .
Step 2
If any individual factor on the left side of the equation is equal to , the entire expression will be equal to .
Step 3
Step 3.1
Set equal to .
Step 3.2
Solve for .
Step 3.2.1
Add to both sides of the equation.
Step 3.2.2
Take the inverse cosecant of both sides of the equation to extract from inside the cosecant.
Step 3.2.3
Simplify the right side.
Step 3.2.3.1
The exact value of is .
Step 3.2.4
The cosecant function is positive in the first and second quadrants. To find the second solution, subtract the reference angle from to find the solution in the second quadrant.
Step 3.2.5
Subtract from .
Step 3.2.6
Find the period of .
Step 3.2.6.1
The period of the function can be calculated using .
Step 3.2.6.2
Replace with in the formula for period.
Step 3.2.6.3
The absolute value is the distance between a number and zero. The distance between and is .
Step 3.2.6.4
Divide by .
Step 3.2.7
The period of the function is so values will repeat every degrees in both directions.
, for any integer
, for any integer
, for any integer
Step 4
Step 4.1
Set equal to .
Step 4.2
Solve for .
Step 4.2.1
Subtract from both sides of the equation.
Step 4.2.2
Take the inverse cosecant of both sides of the equation to extract from inside the cosecant.
Step 4.2.3
Simplify the right side.
Step 4.2.3.1
The exact value of is .
Step 4.2.4
The cosecant function is negative in the third and fourth quadrants. To find the second solution, subtract the solution from , to find a reference angle. Next, add this reference angle to to find the solution in the third quadrant.
Step 4.2.5
Simplify the expression to find the second solution.
Step 4.2.5.1
Subtract from .
Step 4.2.5.2
The resulting angle of is positive, less than , and coterminal with .
Step 4.2.6
Find the period of .
Step 4.2.6.1
The period of the function can be calculated using .
Step 4.2.6.2
Replace with in the formula for period.
Step 4.2.6.3
The absolute value is the distance between a number and zero. The distance between and is .
Step 4.2.6.4
Divide by .
Step 4.2.7
Add to every negative angle to get positive angles.
Step 4.2.7.1
Add to to find the positive angle.
Step 4.2.7.2
Subtract from .
Step 4.2.7.3
List the new angles.
Step 4.2.8
The period of the function is so values will repeat every degrees in both directions.
, for any integer
, for any integer
, for any integer
Step 5
The final solution is all the values that make true.
, for any integer
Step 6
Consolidate the answers.
, for any integer