Enter a problem...
Trigonometry Examples
sec(θ)=-3sec(θ)=−3 , tan(θ)>0tan(θ)>0
Step 1
The tangent function is positive in the first and third quadrants. The secant function is negative in the second and third quadrants. The set of solutions for θθ are limited to the third quadrant since that is the only quadrant found in both sets.
Solution is in the third quadrant.
Step 2
Use the definition of secant to find the known sides of the unit circle right triangle. The quadrant determines the sign on each of the values.
sec(θ)=hypotenuseadjacentsec(θ)=hypotenuseadjacent
Step 3
Find the opposite side of the unit circle triangle. Since the adjacent side and hypotenuse are known, use the Pythagorean theorem to find the remaining side.
Opposite=-√hypotenuse2-adjacent2Opposite=−√hypotenuse2−adjacent2
Step 4
Replace the known values in the equation.
Opposite=-√(3)2-(-1)2Opposite=−√(3)2−(−1)2
Step 5
Step 5.1
Negate √(3)2-(-1)2√(3)2−(−1)2.
Opposite =-√(3)2-(-1)2=−√(3)2−(−1)2
Step 5.2
Raise 33 to the power of 22.
Opposite =-√9-(-1)2=−√9−(−1)2
Step 5.3
Multiply -1−1 by (-1)2(−1)2 by adding the exponents.
Step 5.3.1
Multiply -1−1 by (-1)2(−1)2.
Step 5.3.1.1
Raise -1−1 to the power of 11.
Opposite =-√9+(-1)(-1)2=−√9+(−1)(−1)2
Step 5.3.1.2
Use the power rule aman=am+naman=am+n to combine exponents.
Opposite =-√9+(-1)1+2=−√9+(−1)1+2
Opposite =-√9+(-1)1+2=−√9+(−1)1+2
Step 5.3.2
Add 11 and 22.
Opposite =-√9+(-1)3=−√9+(−1)3
Opposite =-√9+(-1)3=−√9+(−1)3
Step 5.4
Raise -1−1 to the power of 33.
Opposite =-√9-1=−√9−1
Step 5.5
Subtract 11 from 99.
Opposite =-√8=−√8
Step 5.6
Rewrite 88 as 22⋅222⋅2.
Step 5.6.1
Factor 44 out of 88.
Opposite =-√4(2)=−√4(2)
Step 5.6.2
Rewrite 44 as 2222.
Opposite =-√22⋅2=−√22⋅2
Opposite =-√22⋅2=−√22⋅2
Step 5.7
Pull terms out from under the radical.
Opposite =-(2√2)=−(2√2)
Step 5.8
Multiply 22 by -1−1.
Opposite =-2√2=−2√2
Opposite =-2√2=−2√2
Step 6
Step 6.1
Use the definition of sine to find the value of sin(θ)sin(θ).
sin(θ)=opphypsin(θ)=opphyp
Step 6.2
Substitute in the known values.
sin(θ)=-2√23sin(θ)=−2√23
Step 6.3
Move the negative in front of the fraction.
sin(θ)=-2√23sin(θ)=−2√23
sin(θ)=-2√23sin(θ)=−2√23
Step 7
Step 7.1
Use the definition of cosine to find the value of cos(θ)cos(θ).
cos(θ)=adjhypcos(θ)=adjhyp
Step 7.2
Substitute in the known values.
cos(θ)=-13cos(θ)=−13
Step 7.3
Move the negative in front of the fraction.
cos(θ)=-13cos(θ)=−13
cos(θ)=-13cos(θ)=−13
Step 8
Step 8.1
Use the definition of tangent to find the value of tan(θ)tan(θ).
tan(θ)=oppadjtan(θ)=oppadj
Step 8.2
Substitute in the known values.
tan(θ)=-2√2-1tan(θ)=−2√2−1
Step 8.3
Simplify the value of tan(θ)tan(θ).
Step 8.3.1
Move the negative one from the denominator of -2√2-1−2√2−1.
tan(θ)=-1⋅(-2√2)tan(θ)=−1⋅(−2√2)
Step 8.3.2
Rewrite -1⋅(-2√2)−1⋅(−2√2) as -(-2√2)−(−2√2).
tan(θ)=-(-2√2)tan(θ)=−(−2√2)
Step 8.3.3
Multiply -2−2 by -1−1.
tan(θ)=2√2tan(θ)=2√2
tan(θ)=2√2tan(θ)=2√2
tan(θ)=2√2tan(θ)=2√2
Step 9
Step 9.1
Use the definition of cotangent to find the value of cot(θ)cot(θ).
cot(θ)=adjoppcot(θ)=adjopp
Step 9.2
Substitute in the known values.
cot(θ)=-1-2√2cot(θ)=−1−2√2
Step 9.3
Simplify the value of cot(θ)cot(θ).
Step 9.3.1
Dividing two negative values results in a positive value.
cot(θ)=12√2cot(θ)=12√2
Step 9.3.2
Multiply 12√212√2 by √2√2√2√2.
cot(θ)=12√2⋅√2√2cot(θ)=12√2⋅√2√2
Step 9.3.3
Combine and simplify the denominator.
Step 9.3.3.1
Multiply 12√212√2 by √2√2√2√2.
cot(θ)=√22√2√2cot(θ)=√22√2√2
Step 9.3.3.2
Move √2√2.
cot(θ)=√22(√2√2)cot(θ)=√22(√2√2)
Step 9.3.3.3
Raise √2√2 to the power of 11.
cot(θ)=√22(√2√2)cot(θ)=√22(√2√2)
Step 9.3.3.4
Raise √2√2 to the power of 11.
cot(θ)=√22(√2√2)cot(θ)=√22(√2√2)
Step 9.3.3.5
Use the power rule aman=am+naman=am+n to combine exponents.
cot(θ)=√22√21+1cot(θ)=√22√21+1
Step 9.3.3.6
Add 11 and 11.
cot(θ)=√22√22cot(θ)=√22√22
Step 9.3.3.7
Rewrite √22√22 as 22.
Step 9.3.3.7.1
Use n√ax=axnn√ax=axn to rewrite √2√2 as 212212.
cot(θ)=√22(212)2cot(θ)=√22(212)2
Step 9.3.3.7.2
Apply the power rule and multiply exponents, (am)n=amn(am)n=amn.
cot(θ)=√22⋅212⋅2cot(θ)=√22⋅212⋅2
Step 9.3.3.7.3
Combine 1212 and 22.
cot(θ)=√22⋅222cot(θ)=√22⋅222
Step 9.3.3.7.4
Cancel the common factor of 22.
Step 9.3.3.7.4.1
Cancel the common factor.
cot(θ)=√22⋅222
Step 9.3.3.7.4.2
Rewrite the expression.
cot(θ)=√22⋅2
cot(θ)=√22⋅2
Step 9.3.3.7.5
Evaluate the exponent.
cot(θ)=√22⋅2
cot(θ)=√22⋅2
cot(θ)=√22⋅2
Step 9.3.4
Multiply 2 by 2.
cot(θ)=√24
cot(θ)=√24
cot(θ)=√24
Step 10
Step 10.1
Use the definition of cosecant to find the value of csc(θ).
csc(θ)=hypopp
Step 10.2
Substitute in the known values.
csc(θ)=3-2√2
Step 10.3
Simplify the value of csc(θ).
Step 10.3.1
Move the negative in front of the fraction.
csc(θ)=-32√2
Step 10.3.2
Multiply 32√2 by √2√2.
csc(θ)=-(32√2⋅√2√2)
Step 10.3.3
Combine and simplify the denominator.
Step 10.3.3.1
Multiply 32√2 by √2√2.
csc(θ)=-3√22√2√2
Step 10.3.3.2
Move √2.
csc(θ)=-3√22(√2√2)
Step 10.3.3.3
Raise √2 to the power of 1.
csc(θ)=-3√22(√2√2)
Step 10.3.3.4
Raise √2 to the power of 1.
csc(θ)=-3√22(√2√2)
Step 10.3.3.5
Use the power rule aman=am+n to combine exponents.
csc(θ)=-3√22√21+1
Step 10.3.3.6
Add 1 and 1.
csc(θ)=-3√22√22
Step 10.3.3.7
Rewrite √22 as 2.
Step 10.3.3.7.1
Use n√ax=axn to rewrite √2 as 212.
csc(θ)=-3√22(212)2
Step 10.3.3.7.2
Apply the power rule and multiply exponents, (am)n=amn.
csc(θ)=-3√22⋅212⋅2
Step 10.3.3.7.3
Combine 12 and 2.
csc(θ)=-3√22⋅222
Step 10.3.3.7.4
Cancel the common factor of 2.
Step 10.3.3.7.4.1
Cancel the common factor.
csc(θ)=-3√22⋅222
Step 10.3.3.7.4.2
Rewrite the expression.
csc(θ)=-3√22⋅2
csc(θ)=-3√22⋅2
Step 10.3.3.7.5
Evaluate the exponent.
csc(θ)=-3√22⋅2
csc(θ)=-3√22⋅2
csc(θ)=-3√22⋅2
Step 10.3.4
Multiply 2 by 2.
csc(θ)=-3√24
csc(θ)=-3√24
csc(θ)=-3√24
Step 11
This is the solution to each trig value.
sin(θ)=-2√23
cos(θ)=-13
tan(θ)=2√2
cot(θ)=√24
sec(θ)=-3
csc(θ)=-3√24