Trigonometry Examples

Find Trig Functions Using Identities sec(theta)=-3 , tan(theta)>0
sec(θ)=-3sec(θ)=3 , tan(θ)>0tan(θ)>0
Step 1
The tangent function is positive in the first and third quadrants. The secant function is negative in the second and third quadrants. The set of solutions for θθ are limited to the third quadrant since that is the only quadrant found in both sets.
Solution is in the third quadrant.
Step 2
Use the definition of secant to find the known sides of the unit circle right triangle. The quadrant determines the sign on each of the values.
sec(θ)=hypotenuseadjacentsec(θ)=hypotenuseadjacent
Step 3
Find the opposite side of the unit circle triangle. Since the adjacent side and hypotenuse are known, use the Pythagorean theorem to find the remaining side.
Opposite=-hypotenuse2-adjacent2Opposite=hypotenuse2adjacent2
Step 4
Replace the known values in the equation.
Opposite=-(3)2-(-1)2Opposite=(3)2(1)2
Step 5
Simplify inside the radical.
Tap for more steps...
Step 5.1
Negate (3)2-(-1)2(3)2(1)2.
Opposite =-(3)2-(-1)2=(3)2(1)2
Step 5.2
Raise 33 to the power of 22.
Opposite =-9-(-1)2=9(1)2
Step 5.3
Multiply -11 by (-1)2(1)2 by adding the exponents.
Tap for more steps...
Step 5.3.1
Multiply -11 by (-1)2(1)2.
Tap for more steps...
Step 5.3.1.1
Raise -11 to the power of 11.
Opposite =-9+(-1)(-1)2=9+(1)(1)2
Step 5.3.1.2
Use the power rule aman=am+naman=am+n to combine exponents.
Opposite =-9+(-1)1+2=9+(1)1+2
Opposite =-9+(-1)1+2=9+(1)1+2
Step 5.3.2
Add 11 and 22.
Opposite =-9+(-1)3=9+(1)3
Opposite =-9+(-1)3=9+(1)3
Step 5.4
Raise -11 to the power of 33.
Opposite =-9-1=91
Step 5.5
Subtract 11 from 99.
Opposite =-8=8
Step 5.6
Rewrite 88 as 222222.
Tap for more steps...
Step 5.6.1
Factor 44 out of 88.
Opposite =-4(2)=4(2)
Step 5.6.2
Rewrite 44 as 2222.
Opposite =-222=222
Opposite =-222=222
Step 5.7
Pull terms out from under the radical.
Opposite =-(22)=(22)
Step 5.8
Multiply 22 by -11.
Opposite =-22=22
Opposite =-22=22
Step 6
Find the value of sine.
Tap for more steps...
Step 6.1
Use the definition of sine to find the value of sin(θ)sin(θ).
sin(θ)=opphypsin(θ)=opphyp
Step 6.2
Substitute in the known values.
sin(θ)=-223sin(θ)=223
Step 6.3
Move the negative in front of the fraction.
sin(θ)=-223sin(θ)=223
sin(θ)=-223sin(θ)=223
Step 7
Find the value of cosine.
Tap for more steps...
Step 7.1
Use the definition of cosine to find the value of cos(θ)cos(θ).
cos(θ)=adjhypcos(θ)=adjhyp
Step 7.2
Substitute in the known values.
cos(θ)=-13cos(θ)=13
Step 7.3
Move the negative in front of the fraction.
cos(θ)=-13cos(θ)=13
cos(θ)=-13cos(θ)=13
Step 8
Find the value of tangent.
Tap for more steps...
Step 8.1
Use the definition of tangent to find the value of tan(θ)tan(θ).
tan(θ)=oppadjtan(θ)=oppadj
Step 8.2
Substitute in the known values.
tan(θ)=-22-1tan(θ)=221
Step 8.3
Simplify the value of tan(θ)tan(θ).
Tap for more steps...
Step 8.3.1
Move the negative one from the denominator of -22-1221.
tan(θ)=-1(-22)tan(θ)=1(22)
Step 8.3.2
Rewrite -1(-22)1(22) as -(-22)(22).
tan(θ)=-(-22)tan(θ)=(22)
Step 8.3.3
Multiply -22 by -11.
tan(θ)=22tan(θ)=22
tan(θ)=22tan(θ)=22
tan(θ)=22tan(θ)=22
Step 9
Find the value of cotangent.
Tap for more steps...
Step 9.1
Use the definition of cotangent to find the value of cot(θ)cot(θ).
cot(θ)=adjoppcot(θ)=adjopp
Step 9.2
Substitute in the known values.
cot(θ)=-1-22cot(θ)=122
Step 9.3
Simplify the value of cot(θ)cot(θ).
Tap for more steps...
Step 9.3.1
Dividing two negative values results in a positive value.
cot(θ)=122cot(θ)=122
Step 9.3.2
Multiply 122122 by 2222.
cot(θ)=12222cot(θ)=12222
Step 9.3.3
Combine and simplify the denominator.
Tap for more steps...
Step 9.3.3.1
Multiply 122122 by 2222.
cot(θ)=2222cot(θ)=2222
Step 9.3.3.2
Move 22.
cot(θ)=22(22)cot(θ)=22(22)
Step 9.3.3.3
Raise 22 to the power of 11.
cot(θ)=22(22)cot(θ)=22(22)
Step 9.3.3.4
Raise 22 to the power of 11.
cot(θ)=22(22)cot(θ)=22(22)
Step 9.3.3.5
Use the power rule aman=am+naman=am+n to combine exponents.
cot(θ)=2221+1cot(θ)=2221+1
Step 9.3.3.6
Add 11 and 11.
cot(θ)=2222cot(θ)=2222
Step 9.3.3.7
Rewrite 2222 as 22.
Tap for more steps...
Step 9.3.3.7.1
Use nax=axnnax=axn to rewrite 22 as 212212.
cot(θ)=22(212)2cot(θ)=22(212)2
Step 9.3.3.7.2
Apply the power rule and multiply exponents, (am)n=amn(am)n=amn.
cot(θ)=222122cot(θ)=222122
Step 9.3.3.7.3
Combine 1212 and 22.
cot(θ)=22222cot(θ)=22222
Step 9.3.3.7.4
Cancel the common factor of 22.
Tap for more steps...
Step 9.3.3.7.4.1
Cancel the common factor.
cot(θ)=22222
Step 9.3.3.7.4.2
Rewrite the expression.
cot(θ)=222
cot(θ)=222
Step 9.3.3.7.5
Evaluate the exponent.
cot(θ)=222
cot(θ)=222
cot(θ)=222
Step 9.3.4
Multiply 2 by 2.
cot(θ)=24
cot(θ)=24
cot(θ)=24
Step 10
Find the value of cosecant.
Tap for more steps...
Step 10.1
Use the definition of cosecant to find the value of csc(θ).
csc(θ)=hypopp
Step 10.2
Substitute in the known values.
csc(θ)=3-22
Step 10.3
Simplify the value of csc(θ).
Tap for more steps...
Step 10.3.1
Move the negative in front of the fraction.
csc(θ)=-322
Step 10.3.2
Multiply 322 by 22.
csc(θ)=-(32222)
Step 10.3.3
Combine and simplify the denominator.
Tap for more steps...
Step 10.3.3.1
Multiply 322 by 22.
csc(θ)=-32222
Step 10.3.3.2
Move 2.
csc(θ)=-322(22)
Step 10.3.3.3
Raise 2 to the power of 1.
csc(θ)=-322(22)
Step 10.3.3.4
Raise 2 to the power of 1.
csc(θ)=-322(22)
Step 10.3.3.5
Use the power rule aman=am+n to combine exponents.
csc(θ)=-32221+1
Step 10.3.3.6
Add 1 and 1.
csc(θ)=-32222
Step 10.3.3.7
Rewrite 22 as 2.
Tap for more steps...
Step 10.3.3.7.1
Use nax=axn to rewrite 2 as 212.
csc(θ)=-322(212)2
Step 10.3.3.7.2
Apply the power rule and multiply exponents, (am)n=amn.
csc(θ)=-3222122
Step 10.3.3.7.3
Combine 12 and 2.
csc(θ)=-322222
Step 10.3.3.7.4
Cancel the common factor of 2.
Tap for more steps...
Step 10.3.3.7.4.1
Cancel the common factor.
csc(θ)=-322222
Step 10.3.3.7.4.2
Rewrite the expression.
csc(θ)=-3222
csc(θ)=-3222
Step 10.3.3.7.5
Evaluate the exponent.
csc(θ)=-3222
csc(θ)=-3222
csc(θ)=-3222
Step 10.3.4
Multiply 2 by 2.
csc(θ)=-324
csc(θ)=-324
csc(θ)=-324
Step 11
This is the solution to each trig value.
sin(θ)=-223
cos(θ)=-13
tan(θ)=22
cot(θ)=24
sec(θ)=-3
csc(θ)=-324
 [x2  12  π  xdx ]