Enter a problem...
Trigonometry Examples
sec(θ)=-√10sec(θ)=−√10 , cot(θ)>0cot(θ)>0
Step 1
The cotangent function is positive in the first and third quadrants. The secant function is negative in the second and third quadrants. The set of solutions for θθ are limited to the third quadrant since that is the only quadrant found in both sets.
Solution is in the third quadrant.
Step 2
Use the definition of secant to find the known sides of the unit circle right triangle. The quadrant determines the sign on each of the values.
sec(θ)=hypotenuseadjacentsec(θ)=hypotenuseadjacent
Step 3
Find the opposite side of the unit circle triangle. Since the adjacent side and hypotenuse are known, use the Pythagorean theorem to find the remaining side.
Opposite=-√hypotenuse2-adjacent2Opposite=−√hypotenuse2−adjacent2
Step 4
Replace the known values in the equation.
Opposite=-√(√10)2-(-1)2Opposite=−√(√10)2−(−1)2
Step 5
Step 5.1
Negate √(√10)2-(-1)2√(√10)2−(−1)2.
Opposite =-√(√10)2-(-1)2=−√(√10)2−(−1)2
Step 5.2
Rewrite √102√102 as 1010.
Step 5.2.1
Use n√ax=axnn√ax=axn to rewrite √10√10 as 10121012.
Opposite =-√(1012)2-(-1)2=−√(1012)2−(−1)2
Step 5.2.2
Apply the power rule and multiply exponents, (am)n=amn(am)n=amn.
Opposite =-√1012⋅2-(-1)2=−√1012⋅2−(−1)2
Step 5.2.3
Combine 1212 and 22.
Opposite =-√1022-(-1)2=−√1022−(−1)2
Step 5.2.4
Cancel the common factor of 22.
Step 5.2.4.1
Cancel the common factor.
Opposite =-√1022-(-1)2
Step 5.2.4.2
Rewrite the expression.
Opposite =-√10-(-1)2
Opposite =-√10-(-1)2
Step 5.2.5
Evaluate the exponent.
Opposite =-√10-(-1)2
Opposite =-√10-(-1)2
Step 5.3
Multiply -1 by (-1)2 by adding the exponents.
Step 5.3.1
Multiply -1 by (-1)2.
Step 5.3.1.1
Raise -1 to the power of 1.
Opposite =-√10+(-1)(-1)2
Step 5.3.1.2
Use the power rule aman=am+n to combine exponents.
Opposite =-√10+(-1)1+2
Opposite =-√10+(-1)1+2
Step 5.3.2
Add 1 and 2.
Opposite =-√10+(-1)3
Opposite =-√10+(-1)3
Step 5.4
Raise -1 to the power of 3.
Opposite =-√10-1
Step 5.5
Subtract 1 from 10.
Opposite =-√9
Step 5.6
Rewrite 9 as 32.
Opposite =-√32
Step 5.7
Pull terms out from under the radical, assuming positive real numbers.
Opposite =-1⋅3
Step 5.8
Multiply -1 by 3.
Opposite =-3
Opposite =-3
Step 6
Step 6.1
Use the definition of sine to find the value of sin(θ).
sin(θ)=opphyp
Step 6.2
Substitute in the known values.
sin(θ)=-3√10
Step 6.3
Simplify the value of sin(θ).
Step 6.3.1
Move the negative in front of the fraction.
sin(θ)=-3√10
Step 6.3.2
Multiply 3√10 by √10√10.
sin(θ)=-(3√10⋅√10√10)
Step 6.3.3
Combine and simplify the denominator.
Step 6.3.3.1
Multiply 3√10 by √10√10.
sin(θ)=-3√10√10√10
Step 6.3.3.2
Raise √10 to the power of 1.
sin(θ)=-3√10√10√10
Step 6.3.3.3
Raise √10 to the power of 1.
sin(θ)=-3√10√10√10
Step 6.3.3.4
Use the power rule aman=am+n to combine exponents.
sin(θ)=-3√10√101+1
Step 6.3.3.5
Add 1 and 1.
sin(θ)=-3√10√102
Step 6.3.3.6
Rewrite √102 as 10.
Step 6.3.3.6.1
Use n√ax=axn to rewrite √10 as 1012.
sin(θ)=-3√10(1012)2
Step 6.3.3.6.2
Apply the power rule and multiply exponents, (am)n=amn.
sin(θ)=-3√101012⋅2
Step 6.3.3.6.3
Combine 12 and 2.
sin(θ)=-3√101022
Step 6.3.3.6.4
Cancel the common factor of 2.
Step 6.3.3.6.4.1
Cancel the common factor.
sin(θ)=-3√101022
Step 6.3.3.6.4.2
Rewrite the expression.
sin(θ)=-3√1010
sin(θ)=-3√1010
Step 6.3.3.6.5
Evaluate the exponent.
sin(θ)=-3√1010
sin(θ)=-3√1010
sin(θ)=-3√1010
sin(θ)=-3√1010
sin(θ)=-3√1010
Step 7
Step 7.1
Use the definition of cosine to find the value of cos(θ).
cos(θ)=adjhyp
Step 7.2
Substitute in the known values.
cos(θ)=-1√10
Step 7.3
Simplify the value of cos(θ).
Step 7.3.1
Move the negative in front of the fraction.
cos(θ)=-1√10
Step 7.3.2
Multiply 1√10 by √10√10.
cos(θ)=-(1√10⋅√10√10)
Step 7.3.3
Combine and simplify the denominator.
Step 7.3.3.1
Multiply 1√10 by √10√10.
cos(θ)=-√10√10√10
Step 7.3.3.2
Raise √10 to the power of 1.
cos(θ)=-√10√10√10
Step 7.3.3.3
Raise √10 to the power of 1.
cos(θ)=-√10√10√10
Step 7.3.3.4
Use the power rule aman=am+n to combine exponents.
cos(θ)=-√10√101+1
Step 7.3.3.5
Add 1 and 1.
cos(θ)=-√10√102
Step 7.3.3.6
Rewrite √102 as 10.
Step 7.3.3.6.1
Use n√ax=axn to rewrite √10 as 1012.
cos(θ)=-√10(1012)2
Step 7.3.3.6.2
Apply the power rule and multiply exponents, (am)n=amn.
cos(θ)=-√101012⋅2
Step 7.3.3.6.3
Combine 12 and 2.
cos(θ)=-√101022
Step 7.3.3.6.4
Cancel the common factor of 2.
Step 7.3.3.6.4.1
Cancel the common factor.
cos(θ)=-√101022
Step 7.3.3.6.4.2
Rewrite the expression.
cos(θ)=-√1010
cos(θ)=-√1010
Step 7.3.3.6.5
Evaluate the exponent.
cos(θ)=-√1010
cos(θ)=-√1010
cos(θ)=-√1010
cos(θ)=-√1010
cos(θ)=-√1010
Step 8
Step 8.1
Use the definition of tangent to find the value of tan(θ).
tan(θ)=oppadj
Step 8.2
Substitute in the known values.
tan(θ)=-3-1
Step 8.3
Divide -3 by -1.
tan(θ)=3
tan(θ)=3
Step 9
Step 9.1
Use the definition of cotangent to find the value of cot(θ).
cot(θ)=adjopp
Step 9.2
Substitute in the known values.
cot(θ)=-1-3
Step 9.3
Dividing two negative values results in a positive value.
cot(θ)=13
cot(θ)=13
Step 10
Step 10.1
Use the definition of cosecant to find the value of csc(θ).
csc(θ)=hypopp
Step 10.2
Substitute in the known values.
csc(θ)=√10-3
Step 10.3
Move the negative in front of the fraction.
csc(θ)=-√103
csc(θ)=-√103
Step 11
This is the solution to each trig value.
sin(θ)=-3√1010
cos(θ)=-√1010
tan(θ)=3
cot(θ)=13
sec(θ)=-√10
csc(θ)=-√103