Trigonometry Examples

Verify the Identity (2sin(t)cos(t))/(sin(t)+cos(t))=sin(t)+cos(t)-1/(sin(t)+cos(t))
2sin(t)cos(t)sin(t)+cos(t)=sin(t)+cos(t)-1sin(t)+cos(t)
Step 1
Start on the right side.
sin(t)+cos(t)-1sin(t)+cos(t)
Step 2
Simplify the expression.
Tap for more steps...
Step 2.1
To write sin(t) as a fraction with a common denominator, multiply by sin(t)+cos(t)sin(t)+cos(t).
sin(t)(sin(t)+cos(t))sin(t)+cos(t)-1sin(t)+cos(t)+cos(t)
Step 2.2
Combine the numerators over the common denominator.
sin(t)(sin(t)+cos(t))-1sin(t)+cos(t)+cos(t)
Step 2.3
Simplify the numerator.
Tap for more steps...
Step 2.3.1
Apply the distributive property.
sin(t)sin(t)+sin(t)cos(t)-1sin(t)+cos(t)+cos(t)
Step 2.3.2
Multiply sin(t)sin(t).
Tap for more steps...
Step 2.3.2.1
Raise sin(t) to the power of 1.
sin1(t)sin(t)+sin(t)cos(t)-1sin(t)+cos(t)+cos(t)
Step 2.3.2.2
Raise sin(t) to the power of 1.
sin1(t)sin1(t)+sin(t)cos(t)-1sin(t)+cos(t)+cos(t)
Step 2.3.2.3
Use the power rule aman=am+n to combine exponents.
sin(t)1+1+sin(t)cos(t)-1sin(t)+cos(t)+cos(t)
Step 2.3.2.4
Add 1 and 1.
sin2(t)+sin(t)cos(t)-1sin(t)+cos(t)+cos(t)
sin2(t)+sin(t)cos(t)-1sin(t)+cos(t)+cos(t)
Step 2.3.3
Move -1.
sin2(t)-1+sin(t)cos(t)sin(t)+cos(t)+cos(t)
Step 2.3.4
Reorder sin2(t) and -1.
-1+sin2(t)+sin(t)cos(t)sin(t)+cos(t)+cos(t)
Step 2.3.5
Rewrite -1 as -1(1).
-1(1)+sin2(t)+sin(t)cos(t)sin(t)+cos(t)+cos(t)
Step 2.3.6
Factor -1 out of sin2(t).
-1(1)-1(-sin2(t))+sin(t)cos(t)sin(t)+cos(t)+cos(t)
Step 2.3.7
Factor -1 out of -1(1)-1(-sin2(t)).
-1(1-sin2(t))+sin(t)cos(t)sin(t)+cos(t)+cos(t)
Step 2.3.8
Rewrite -1(1-sin2(t)) as -(1-sin2(t)).
-(1-sin2(t))+sin(t)cos(t)sin(t)+cos(t)+cos(t)
Step 2.3.9
Apply pythagorean identity.
-cos2(t)+sin(t)cos(t)sin(t)+cos(t)+cos(t)
Step 2.3.10
Factor cos(t) out of -cos2(t)+sin(t)cos(t).
Tap for more steps...
Step 2.3.10.1
Factor cos(t) out of -cos2(t).
cos(t)(-cos(t))+sin(t)cos(t)sin(t)+cos(t)+cos(t)
Step 2.3.10.2
Factor cos(t) out of sin(t)cos(t).
cos(t)(-cos(t))+cos(t)sin(t)sin(t)+cos(t)+cos(t)
Step 2.3.10.3
Factor cos(t) out of cos(t)(-cos(t))+cos(t)sin(t).
cos(t)(-cos(t)+sin(t))sin(t)+cos(t)+cos(t)
cos(t)(-cos(t)+sin(t))sin(t)+cos(t)+cos(t)
cos(t)(-cos(t)+sin(t))sin(t)+cos(t)+cos(t)
Step 2.4
To write cos(t) as a fraction with a common denominator, multiply by sin(t)+cos(t)sin(t)+cos(t).
cos(t)(-cos(t)+sin(t))sin(t)+cos(t)+cos(t)(sin(t)+cos(t))sin(t)+cos(t)
Step 2.5
Combine the numerators over the common denominator.
cos(t)(-cos(t)+sin(t))+cos(t)(sin(t)+cos(t))sin(t)+cos(t)
Step 2.6
Simplify the numerator.
Tap for more steps...
Step 2.6.1
Factor cos(t) out of cos(t)(-cos(t)+sin(t))+cos(t)(sin(t)+cos(t)).
cos(t)(-cos(t)+sin(t)+sin(t)+cos(t))sin(t)+cos(t)
Step 2.6.2
Add -cos(t) and cos(t).
cos(t)(0+sin(t)+sin(t))sin(t)+cos(t)
Step 2.6.3
Add 0 and sin(t).
cos(t)(sin(t)+sin(t))sin(t)+cos(t)
Step 2.6.4
Add sin(t) and sin(t).
cos(t)2sin(t)sin(t)+cos(t)
cos(t)2sin(t)sin(t)+cos(t)
Step 2.7
Move 2 to the left of cos(t).
2cos(t)sin(t)sin(t)+cos(t)
2cos(t)sin(t)sin(t)+cos(t)
Step 3
Reorder terms.
2cos(t)sin(t)cos(t)+sin(t)
Step 4
Rewrite 2cos(t)sin(t)cos(t)+sin(t) as 2sin(t)cos(t)sin(t)+cos(t).
2sin(t)cos(t)sin(t)+cos(t)
Step 5
Because the two sides have been shown to be equivalent, the equation is an identity.
2sin(t)cos(t)sin(t)+cos(t)=sin(t)+cos(t)-1sin(t)+cos(t) is an identity
 [x2  12  π  xdx ]