Enter a problem...
Trigonometry Examples
(√1010,3√1010)(√1010,3√1010)
Step 1
To find the cos(θ)cos(θ) between the x-axis and the line between the points (0,0)(0,0) and (√1010,3√1010)(√1010,3√1010), draw the triangle between the three points (0,0)(0,0), (√1010,0)(√1010,0), and (√1010,3√1010)(√1010,3√1010).
Opposite : 3√10103√1010
Adjacent : √1010√1010
Step 2
Step 2.1
Apply the product rule to √1010√1010.
√√102102+(3√1010)2
⎷√102102+(3√1010)2
Step 2.2
Rewrite √102√102 as 1010.
Step 2.2.1
Use n√ax=axnn√ax=axn to rewrite √10√10 as 10121012.
√(1012)2102+(3√1010)2
⎷(1012)2102+(3√1010)2
Step 2.2.2
Apply the power rule and multiply exponents, (am)n=amn(am)n=amn.
√1012⋅2102+(3√1010)2
⎷1012⋅2102+(3√1010)2
Step 2.2.3
Combine 1212 and 22.
√1022102+(3√1010)2
⎷1022102+(3√1010)2
Step 2.2.4
Cancel the common factor of 22.
Step 2.2.4.1
Cancel the common factor.
√1022102+(3√1010)2
Step 2.2.4.2
Rewrite the expression.
√101102+(3√1010)2
√101102+(3√1010)2
Step 2.2.5
Evaluate the exponent.
√10102+(3√1010)2
√10102+(3√1010)2
Step 2.3
Raise 10 to the power of 2.
√10100+(3√1010)2
Step 2.4
Cancel the common factor of 10 and 100.
Step 2.4.1
Factor 10 out of 10.
√10(1)100+(3√1010)2
Step 2.4.2
Cancel the common factors.
Step 2.4.2.1
Factor 10 out of 100.
√10⋅110⋅10+(3√1010)2
Step 2.4.2.2
Cancel the common factor.
√10⋅110⋅10+(3√1010)2
Step 2.4.2.3
Rewrite the expression.
√110+(3√1010)2
√110+(3√1010)2
√110+(3√1010)2
Step 2.5
Use the power rule (ab)n=anbn to distribute the exponent.
Step 2.5.1
Apply the product rule to 3√1010.
√110+(3√10)2102
Step 2.5.2
Apply the product rule to 3√10.
√110+32√102102
√110+32√102102
Step 2.6
Simplify the numerator.
Step 2.6.1
Raise 3 to the power of 2.
√110+9√102102
Step 2.6.2
Rewrite √102 as 10.
Step 2.6.2.1
Use n√ax=axn to rewrite √10 as 1012.
√110+9(1012)2102
Step 2.6.2.2
Apply the power rule and multiply exponents, (am)n=amn.
√110+9⋅1012⋅2102
Step 2.6.2.3
Combine 12 and 2.
√110+9⋅1022102
Step 2.6.2.4
Cancel the common factor of 2.
Step 2.6.2.4.1
Cancel the common factor.
√110+9⋅1022102
Step 2.6.2.4.2
Rewrite the expression.
√110+9⋅101102
√110+9⋅101102
Step 2.6.2.5
Evaluate the exponent.
√110+9⋅10102
√110+9⋅10102
√110+9⋅10102
Step 2.7
Reduce the expression by cancelling the common factors.
Step 2.7.1
Raise 10 to the power of 2.
√110+9⋅10100
Step 2.7.2
Multiply 9 by 10.
√110+90100
Step 2.7.3
Cancel the common factor of 90 and 100.
Step 2.7.3.1
Factor 10 out of 90.
√110+10(9)100
Step 2.7.3.2
Cancel the common factors.
Step 2.7.3.2.1
Factor 10 out of 100.
√110+10⋅910⋅10
Step 2.7.3.2.2
Cancel the common factor.
√110+10⋅910⋅10
Step 2.7.3.2.3
Rewrite the expression.
√110+910
√110+910
√110+910
Step 2.7.4
Simplify the expression.
Step 2.7.4.1
Combine the numerators over the common denominator.
√1+910
Step 2.7.4.2
Add 1 and 9.
√1010
Step 2.7.4.3
Divide 10 by 10.
√1
Step 2.7.4.4
Any root of 1 is 1.
1
1
1
1
Step 3
cos(θ)=AdjacentHypotenuse therefore cos(θ)=√10101.
√10101
Step 4
Divide √1010 by 1.
cos(θ)=√1010
Step 5
Approximate the result.
cos(θ)=√1010≈0.31622776