Trigonometry Examples

Find the Cosine Given the Point (( square root of 10)/10,(3 square root of 10)/10)
(1010,31010)(1010,31010)
Step 1
To find the cos(θ)cos(θ) between the x-axis and the line between the points (0,0)(0,0) and (1010,31010)(1010,31010), draw the triangle between the three points (0,0)(0,0), (1010,0)(1010,0), and (1010,31010)(1010,31010).
Opposite : 3101031010
Adjacent : 10101010
Step 2
Find the hypotenuse using Pythagorean theorem c=a2+b2c=a2+b2.
Tap for more steps...
Step 2.1
Apply the product rule to 10101010.
102102+(31010)2 102102+(31010)2
Step 2.2
Rewrite 102102 as 1010.
Tap for more steps...
Step 2.2.1
Use nax=axnnax=axn to rewrite 1010 as 10121012.
(1012)2102+(31010)2  (1012)2102+(31010)2
Step 2.2.2
Apply the power rule and multiply exponents, (am)n=amn(am)n=amn.
10122102+(31010)2 10122102+(31010)2
Step 2.2.3
Combine 1212 and 22.
1022102+(31010)2 1022102+(31010)2
Step 2.2.4
Cancel the common factor of 22.
Tap for more steps...
Step 2.2.4.1
Cancel the common factor.
1022102+(31010)2
Step 2.2.4.2
Rewrite the expression.
101102+(31010)2
101102+(31010)2
Step 2.2.5
Evaluate the exponent.
10102+(31010)2
10102+(31010)2
Step 2.3
Raise 10 to the power of 2.
10100+(31010)2
Step 2.4
Cancel the common factor of 10 and 100.
Tap for more steps...
Step 2.4.1
Factor 10 out of 10.
10(1)100+(31010)2
Step 2.4.2
Cancel the common factors.
Tap for more steps...
Step 2.4.2.1
Factor 10 out of 100.
1011010+(31010)2
Step 2.4.2.2
Cancel the common factor.
1011010+(31010)2
Step 2.4.2.3
Rewrite the expression.
110+(31010)2
110+(31010)2
110+(31010)2
Step 2.5
Use the power rule (ab)n=anbn to distribute the exponent.
Tap for more steps...
Step 2.5.1
Apply the product rule to 31010.
110+(310)2102
Step 2.5.2
Apply the product rule to 310.
110+32102102
110+32102102
Step 2.6
Simplify the numerator.
Tap for more steps...
Step 2.6.1
Raise 3 to the power of 2.
110+9102102
Step 2.6.2
Rewrite 102 as 10.
Tap for more steps...
Step 2.6.2.1
Use nax=axn to rewrite 10 as 1012.
110+9(1012)2102
Step 2.6.2.2
Apply the power rule and multiply exponents, (am)n=amn.
110+910122102
Step 2.6.2.3
Combine 12 and 2.
110+91022102
Step 2.6.2.4
Cancel the common factor of 2.
Tap for more steps...
Step 2.6.2.4.1
Cancel the common factor.
110+91022102
Step 2.6.2.4.2
Rewrite the expression.
110+9101102
110+9101102
Step 2.6.2.5
Evaluate the exponent.
110+910102
110+910102
110+910102
Step 2.7
Reduce the expression by cancelling the common factors.
Tap for more steps...
Step 2.7.1
Raise 10 to the power of 2.
110+910100
Step 2.7.2
Multiply 9 by 10.
110+90100
Step 2.7.3
Cancel the common factor of 90 and 100.
Tap for more steps...
Step 2.7.3.1
Factor 10 out of 90.
110+10(9)100
Step 2.7.3.2
Cancel the common factors.
Tap for more steps...
Step 2.7.3.2.1
Factor 10 out of 100.
110+1091010
Step 2.7.3.2.2
Cancel the common factor.
110+1091010
Step 2.7.3.2.3
Rewrite the expression.
110+910
110+910
110+910
Step 2.7.4
Simplify the expression.
Tap for more steps...
Step 2.7.4.1
Combine the numerators over the common denominator.
1+910
Step 2.7.4.2
Add 1 and 9.
1010
Step 2.7.4.3
Divide 10 by 10.
1
Step 2.7.4.4
Any root of 1 is 1.
1
1
1
1
Step 3
cos(θ)=AdjacentHypotenuse therefore cos(θ)=10101.
10101
Step 4
Divide 1010 by 1.
cos(θ)=1010
Step 5
Approximate the result.
cos(θ)=10100.31622776
 [x2  12  π  xdx ]