Enter a problem...
Trigonometry Examples
sin(θ)=12sin(θ)=12 , sec(θ)sec(θ)
Step 1
Use the definition of sine to find the known sides of the unit circle right triangle. The quadrant determines the sign on each of the values.
sin(θ)=oppositehypotenusesin(θ)=oppositehypotenuse
Step 2
Find the adjacent side of the unit circle triangle. Since the hypotenuse and opposite sides are known, use the Pythagorean theorem to find the remaining side.
Adjacent=√hypotenuse2-opposite2Adjacent=√hypotenuse2−opposite2
Step 3
Replace the known values in the equation.
Adjacent=√(2)2-(1)2Adjacent=√(2)2−(1)2
Step 4
Step 4.1
Raise 22 to the power of 22.
Adjacent =√4-(1)2=√4−(1)2
Step 4.2
One to any power is one.
Adjacent =√4-1⋅1=√4−1⋅1
Step 4.3
Multiply -1−1 by 11.
Adjacent =√4-1=√4−1
Step 4.4
Subtract 11 from 44.
Adjacent =√3=√3
Adjacent =√3=√3
Step 5
Use the definition of secant to find the value of sec(θ)sec(θ).
sec(θ)=hypotenuseadjacentsec(θ)=hypotenuseadjacent
Step 6
Substitute in the known values.
sec(θ)=2√3sec(θ)=2√3
Step 7
Step 7.1
Multiply 2√32√3 by √3√3√3√3.
sec(θ)=2√3⋅√3√3sec(θ)=2√3⋅√3√3
Step 7.2
Combine and simplify the denominator.
Step 7.2.1
Multiply 2√32√3 by √3√3√3√3.
sec(θ)=2√3√3√3sec(θ)=2√3√3√3
Step 7.2.2
Raise √3√3 to the power of 11.
sec(θ)=2√3√3√3sec(θ)=2√3√3√3
Step 7.2.3
Raise √3√3 to the power of 11.
sec(θ)=2√3√3√3sec(θ)=2√3√3√3
Step 7.2.4
Use the power rule aman=am+naman=am+n to combine exponents.
sec(θ)=2√3√31+1sec(θ)=2√3√31+1
Step 7.2.5
Add 11 and 11.
sec(θ)=2√3√32sec(θ)=2√3√32
Step 7.2.6
Rewrite √32√32 as 33.
Step 7.2.6.1
Use n√ax=axnn√ax=axn to rewrite √3√3 as 312312.
sec(θ)=2√3(312)2sec(θ)=2√3(312)2
Step 7.2.6.2
Apply the power rule and multiply exponents, (am)n=amn(am)n=amn.
sec(θ)=2√3312⋅2sec(θ)=2√3312⋅2
Step 7.2.6.3
Combine 1212 and 22.
sec(θ)=2√3322sec(θ)=2√3322
Step 7.2.6.4
Cancel the common factor of 22.
Step 7.2.6.4.1
Cancel the common factor.
sec(θ)=2√3322
Step 7.2.6.4.2
Rewrite the expression.
sec(θ)=2√33
sec(θ)=2√33
Step 7.2.6.5
Evaluate the exponent.
sec(θ)=2√33
sec(θ)=2√33
sec(θ)=2√33
sec(θ)=2√33
Step 8
The result can be shown in multiple forms.
Exact Form:
sec(θ)=2√33
Decimal Form:
sec(θ)=1.15470053…