Trigonometry Examples

Find the Trig Value sin(theta)=1/2 , sec(theta)
sin(θ)=12sin(θ)=12 , sec(θ)sec(θ)
Step 1
Use the definition of sine to find the known sides of the unit circle right triangle. The quadrant determines the sign on each of the values.
sin(θ)=oppositehypotenusesin(θ)=oppositehypotenuse
Step 2
Find the adjacent side of the unit circle triangle. Since the hypotenuse and opposite sides are known, use the Pythagorean theorem to find the remaining side.
Adjacent=hypotenuse2-opposite2Adjacent=hypotenuse2opposite2
Step 3
Replace the known values in the equation.
Adjacent=(2)2-(1)2Adjacent=(2)2(1)2
Step 4
Simplify inside the radical.
Tap for more steps...
Step 4.1
Raise 22 to the power of 22.
Adjacent =4-(1)2=4(1)2
Step 4.2
One to any power is one.
Adjacent =4-11=411
Step 4.3
Multiply -11 by 11.
Adjacent =4-1=41
Step 4.4
Subtract 11 from 44.
Adjacent =3=3
Adjacent =3=3
Step 5
Use the definition of secant to find the value of sec(θ)sec(θ).
sec(θ)=hypotenuseadjacentsec(θ)=hypotenuseadjacent
Step 6
Substitute in the known values.
sec(θ)=23sec(θ)=23
Step 7
Simplify the right side.
Tap for more steps...
Step 7.1
Multiply 2323 by 3333.
sec(θ)=2333sec(θ)=2333
Step 7.2
Combine and simplify the denominator.
Tap for more steps...
Step 7.2.1
Multiply 2323 by 3333.
sec(θ)=2333sec(θ)=2333
Step 7.2.2
Raise 33 to the power of 11.
sec(θ)=2333sec(θ)=2333
Step 7.2.3
Raise 33 to the power of 11.
sec(θ)=2333sec(θ)=2333
Step 7.2.4
Use the power rule aman=am+naman=am+n to combine exponents.
sec(θ)=2331+1sec(θ)=2331+1
Step 7.2.5
Add 11 and 11.
sec(θ)=2332sec(θ)=2332
Step 7.2.6
Rewrite 3232 as 33.
Tap for more steps...
Step 7.2.6.1
Use nax=axnnax=axn to rewrite 33 as 312312.
sec(θ)=23(312)2sec(θ)=23(312)2
Step 7.2.6.2
Apply the power rule and multiply exponents, (am)n=amn(am)n=amn.
sec(θ)=233122sec(θ)=233122
Step 7.2.6.3
Combine 1212 and 22.
sec(θ)=23322sec(θ)=23322
Step 7.2.6.4
Cancel the common factor of 22.
Tap for more steps...
Step 7.2.6.4.1
Cancel the common factor.
sec(θ)=23322
Step 7.2.6.4.2
Rewrite the expression.
sec(θ)=233
sec(θ)=233
Step 7.2.6.5
Evaluate the exponent.
sec(θ)=233
sec(θ)=233
sec(θ)=233
sec(θ)=233
Step 8
The result can be shown in multiple forms.
Exact Form:
sec(θ)=233
Decimal Form:
sec(θ)=1.15470053
 [x2  12  π  xdx ]