Enter a problem...
Trigonometry Examples
tan(θ)=3tan(θ)=3
Step 1
Use the definition of tangent to find the known sides of the unit circle right triangle. The quadrant determines the sign on each of the values.
tan(θ)=oppositeadjacent
Step 2
Find the hypotenuse of the unit circle triangle. Since the opposite and adjacent sides are known, use the Pythagorean theorem to find the remaining side.
Hypotenuse=√opposite2+adjacent2
Step 3
Replace the known values in the equation.
Hypotenuse=√(-3)2+(-1)2
Step 4
Step 4.1
Raise -3 to the power of 2.
Hypotenuse =√9+(-1)2
Step 4.2
Raise -1 to the power of 2.
Hypotenuse =√9+1
Step 4.3
Add 9 and 1.
Hypotenuse =√10
Hypotenuse =√10
Step 5
Step 5.1
Use the definition of sine to find the value of sin(θ).
sin(θ)=opphyp
Step 5.2
Substitute in the known values.
sin(θ)=-3√10
Step 5.3
Simplify the value of sin(θ).
Step 5.3.1
Move the negative in front of the fraction.
sin(θ)=-3√10
Step 5.3.2
Multiply 3√10 by √10√10.
sin(θ)=-(3√10⋅√10√10)
Step 5.3.3
Combine and simplify the denominator.
Step 5.3.3.1
Multiply 3√10 by √10√10.
sin(θ)=-3√10√10√10
Step 5.3.3.2
Raise √10 to the power of 1.
sin(θ)=-3√10√10√10
Step 5.3.3.3
Raise √10 to the power of 1.
sin(θ)=-3√10√10√10
Step 5.3.3.4
Use the power rule aman=am+n to combine exponents.
sin(θ)=-3√10√101+1
Step 5.3.3.5
Add 1 and 1.
sin(θ)=-3√10√102
Step 5.3.3.6
Rewrite √102 as 10.
Step 5.3.3.6.1
Use n√ax=axn to rewrite √10 as 1012.
sin(θ)=-3√10(1012)2
Step 5.3.3.6.2
Apply the power rule and multiply exponents, (am)n=amn.
sin(θ)=-3√101012⋅2
Step 5.3.3.6.3
Combine 12 and 2.
sin(θ)=-3√101022
Step 5.3.3.6.4
Cancel the common factor of 2.
Step 5.3.3.6.4.1
Cancel the common factor.
sin(θ)=-3√101022
Step 5.3.3.6.4.2
Rewrite the expression.
sin(θ)=-3√1010
sin(θ)=-3√1010
Step 5.3.3.6.5
Evaluate the exponent.
sin(θ)=-3√1010
sin(θ)=-3√1010
sin(θ)=-3√1010
sin(θ)=-3√1010
sin(θ)=-3√1010
Step 6
Step 6.1
Use the definition of cosine to find the value of cos(θ).
cos(θ)=adjhyp
Step 6.2
Substitute in the known values.
cos(θ)=-1√10
Step 6.3
Simplify the value of cos(θ).
Step 6.3.1
Move the negative in front of the fraction.
cos(θ)=-1√10
Step 6.3.2
Multiply 1√10 by √10√10.
cos(θ)=-(1√10⋅√10√10)
Step 6.3.3
Combine and simplify the denominator.
Step 6.3.3.1
Multiply 1√10 by √10√10.
cos(θ)=-√10√10√10
Step 6.3.3.2
Raise √10 to the power of 1.
cos(θ)=-√10√10√10
Step 6.3.3.3
Raise √10 to the power of 1.
cos(θ)=-√10√10√10
Step 6.3.3.4
Use the power rule aman=am+n to combine exponents.
cos(θ)=-√10√101+1
Step 6.3.3.5
Add 1 and 1.
cos(θ)=-√10√102
Step 6.3.3.6
Rewrite √102 as 10.
Step 6.3.3.6.1
Use n√ax=axn to rewrite √10 as 1012.
cos(θ)=-√10(1012)2
Step 6.3.3.6.2
Apply the power rule and multiply exponents, (am)n=amn.
cos(θ)=-√101012⋅2
Step 6.3.3.6.3
Combine 12 and 2.
cos(θ)=-√101022
Step 6.3.3.6.4
Cancel the common factor of 2.
Step 6.3.3.6.4.1
Cancel the common factor.
cos(θ)=-√101022
Step 6.3.3.6.4.2
Rewrite the expression.
cos(θ)=-√1010
cos(θ)=-√1010
Step 6.3.3.6.5
Evaluate the exponent.
cos(θ)=-√1010
cos(θ)=-√1010
cos(θ)=-√1010
cos(θ)=-√1010
cos(θ)=-√1010
Step 7
Step 7.1
Use the definition of cotangent to find the value of cot(θ).
cot(θ)=adjopp
Step 7.2
Substitute in the known values.
cot(θ)=-1-3
Step 7.3
Dividing two negative values results in a positive value.
cot(θ)=13
cot(θ)=13
Step 8
Step 8.1
Use the definition of secant to find the value of sec(θ).
sec(θ)=hypadj
Step 8.2
Substitute in the known values.
sec(θ)=√10-1
Step 8.3
Simplify the value of sec(θ).
Step 8.3.1
Move the negative one from the denominator of √10-1.
sec(θ)=-1⋅√10
Step 8.3.2
Rewrite -1⋅√10 as -√10.
sec(θ)=-√10
sec(θ)=-√10
sec(θ)=-√10
Step 9
Step 9.1
Use the definition of cosecant to find the value of csc(θ).
csc(θ)=hypopp
Step 9.2
Substitute in the known values.
csc(θ)=√10-3
Step 9.3
Move the negative in front of the fraction.
csc(θ)=-√103
csc(θ)=-√103
Step 10
This is the solution to each trig value.
sin(θ)=-3√1010
cos(θ)=-√1010
tan(θ)=3
cot(θ)=13
sec(θ)=-√10
csc(θ)=-√103