Enter a problem...
Trigonometry Examples
Step 1
Step 1.1
Subtract from both sides of the equation.
Step 1.2
Subtract from .
Step 2
Step 2.1
Divide each term in by .
Step 2.2
Simplify the left side.
Step 2.2.1
Cancel the common factor of .
Step 2.2.1.1
Cancel the common factor.
Step 2.2.1.2
Divide by .
Step 2.3
Simplify the right side.
Step 2.3.1
Divide by .
Step 3
Take the inverse sine of both sides of the equation to extract from inside the sine.
Step 4
Step 4.1
The exact value of is .
Step 5
Step 5.1
Divide each term in by .
Step 5.2
Simplify the left side.
Step 5.2.1
Cancel the common factor of .
Step 5.2.1.1
Cancel the common factor.
Step 5.2.1.2
Divide by .
Step 5.3
Simplify the right side.
Step 5.3.1
Multiply the numerator by the reciprocal of the denominator.
Step 5.3.2
Multiply .
Step 5.3.2.1
Multiply by .
Step 5.3.2.2
Multiply by .
Step 6
The sine function is negative in the third and fourth quadrants. To find the second solution, subtract the solution from , to find a reference angle. Next, add this reference angle to to find the solution in the third quadrant.
Step 7
Step 7.1
Subtract from .
Step 7.2
The resulting angle of is positive, less than , and coterminal with .
Step 7.3
Divide each term in by and simplify.
Step 7.3.1
Divide each term in by .
Step 7.3.2
Simplify the left side.
Step 7.3.2.1
Cancel the common factor of .
Step 7.3.2.1.1
Cancel the common factor.
Step 7.3.2.1.2
Divide by .
Step 7.3.3
Simplify the right side.
Step 7.3.3.1
Multiply the numerator by the reciprocal of the denominator.
Step 7.3.3.2
Cancel the common factor of .
Step 7.3.3.2.1
Factor out of .
Step 7.3.3.2.2
Factor out of .
Step 7.3.3.2.3
Cancel the common factor.
Step 7.3.3.2.4
Rewrite the expression.
Step 7.3.3.3
Multiply by .
Step 7.3.3.4
Multiply by .
Step 8
Step 8.1
The period of the function can be calculated using .
Step 8.2
Replace with in the formula for period.
Step 8.3
The absolute value is the distance between a number and zero. The distance between and is .
Step 8.4
Cancel the common factor of and .
Step 8.4.1
Factor out of .
Step 8.4.2
Cancel the common factors.
Step 8.4.2.1
Factor out of .
Step 8.4.2.2
Cancel the common factor.
Step 8.4.2.3
Rewrite the expression.
Step 9
Step 9.1
Add to to find the positive angle.
Step 9.2
To write as a fraction with a common denominator, multiply by .
Step 9.3
Write each expression with a common denominator of , by multiplying each by an appropriate factor of .
Step 9.3.1
Multiply by .
Step 9.3.2
Multiply by .
Step 9.4
Combine the numerators over the common denominator.
Step 9.5
Simplify the numerator.
Step 9.5.1
Move to the left of .
Step 9.5.2
Subtract from .
Step 9.6
Cancel the common factor of and .
Step 9.6.1
Factor out of .
Step 9.6.2
Cancel the common factors.
Step 9.6.2.1
Factor out of .
Step 9.6.2.2
Cancel the common factor.
Step 9.6.2.3
Rewrite the expression.
Step 9.7
List the new angles.
Step 10
The period of the function is so values will repeat every radians in both directions.
, for any integer
Step 11
Consolidate the answers.
, for any integer