Enter a problem...
Trigonometry Examples
-4cos(x)=-sin2(x)+4
Step 1
Step 1.1
Add sin2(x) to both sides of the equation.
-4cos(x)+sin2(x)=4
Step 1.2
Subtract 4 from both sides of the equation.
-4cos(x)+sin2(x)-4=0
-4cos(x)+sin2(x)-4=0
Step 2
Replace sin2(x) with 1-cos2(x).
-4cos(x)(1-cos2(x))-4=0
Step 3
Step 3.1
Simplify the left side.
Step 3.1.1
Apply pythagorean identity.
-4cos(x)sin2(x)-4=0
-4cos(x)sin2(x)-4=0
Step 3.2
Replace the sin2(x) with 1-cos2(x) based on the sin2(x)+cos2(x)=1 identity.
(1-cos2(x))-4=0
Step 3.3
Subtract 4 from 1.
-cos2(x)-3=0
Step 3.4
Add 3 to both sides of the equation.
-cos2(x)=3
Step 3.5
Divide each term in -cos2(x)=3 by -1 and simplify.
Step 3.5.1
Divide each term in -cos2(x)=3 by -1.
-cos2(x)-1=3-1
Step 3.5.2
Simplify the left side.
Step 3.5.2.1
Dividing two negative values results in a positive value.
cos2(x)1=3-1
Step 3.5.2.2
Divide cos2(x) by 1.
cos2(x)=3-1
cos2(x)=3-1
Step 3.5.3
Simplify the right side.
Step 3.5.3.1
Divide 3 by -1.
cos2(x)=-3
cos2(x)=-3
cos2(x)=-3
Step 3.6
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
cos(x)=±√-3
Step 3.7
Simplify ±√-3.
Step 3.7.1
Rewrite -3 as -1(3).
cos(x)=±√-1(3)
Step 3.7.2
Rewrite √-1(3) as √-1⋅√3.
cos(x)=±√-1⋅√3
Step 3.7.3
Rewrite √-1 as i.
cos(x)=±i√3
cos(x)=±i√3
Step 3.8
The complete solution is the result of both the positive and negative portions of the solution.
Step 3.8.1
First, use the positive value of the ± to find the first solution.
cos(x)=i√3
Step 3.8.2
Next, use the negative value of the ± to find the second solution.
cos(x)=-i√3
Step 3.8.3
The complete solution is the result of both the positive and negative portions of the solution.
cos(x)=i√3,-i√3
cos(x)=i√3,-i√3
Step 3.9
Set up each of the solutions to solve for x.
cos(x)=i√3
cos(x)=-i√3
Step 3.10
Solve for x in cos(x)=i√3.
Step 3.10.1
Take the inverse cosine of both sides of the equation to extract x from inside the cosine.
x=arccos(i√3)
Step 3.10.2
The inverse cosine of arccos(i√3) is undefined.
Undefined
Undefined
Step 3.11
Solve for x in cos(x)=-i√3.
Step 3.11.1
Take the inverse cosine of both sides of the equation to extract x from inside the cosine.
x=arccos(-i√3)
Step 3.11.2
The inverse cosine of arccos(-i√3) is undefined.
Undefined
Undefined
Step 3.12
List all of the solutions.
No solution
No solution