Statistics Examples

Find the Mean 3 , 4 , 8 , 8 , 10 , 11 , 12 , 13 , 14 , 15 , 15 , 16 , 16 , 17 , 17 , 18 , 21 , 22 , 22 , 24 , 24 , 25 , 26 , 26 , 27 , 27 , 29 , 29 , 31 , 32 , 33 , 33 , 34 , 34 , 35 , 37 , 40 , 44 , 44 , 47
, , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,
Step 1
The mean of a set of numbers is the sum divided by the number of terms.
Step 2
Simplify the numerator.
Tap for more steps...
Step 2.1
Add and .
Step 2.2
Add and .
Step 2.3
Add and .
Step 2.4
Add and .
Step 2.5
Add and .
Step 2.6
Add and .
Step 2.7
Add and .
Step 2.8
Add and .
Step 2.9
Add and .
Step 2.10
Add and .
Step 2.11
Add and .
Step 2.12
Add and .
Step 2.13
Add and .
Step 2.14
Add and .
Step 2.15
Add and .
Step 2.16
Add and .
Step 2.17
Add and .
Step 2.18
Add and .
Step 2.19
Add and .
Step 2.20
Add and .
Step 2.21
Add and .
Step 2.22
Add and .
Step 2.23
Add and .
Step 2.24
Add and .
Step 2.25
Add and .
Step 2.26
Add and .
Step 2.27
Add and .
Step 2.28
Add and .
Step 2.29
Add and .
Step 2.30
Add and .
Step 2.31
Add and .
Step 2.32
Add and .
Step 2.33
Add and .
Step 2.34
Add and .
Step 2.35
Add and .
Step 2.36
Add and .
Step 2.37
Add and .
Step 2.38
Add and .
Step 2.39
Add and .
Step 3
Divide.
Step 4
The mean should be rounded to one more decimal place than the original data. If the original data were mixed, round to one decimal place more than the least precise.
Cookies & Privacy
This website uses cookies to ensure you get the best experience on our website.
More Information