Precalculus Examples

Find the Vertex y^2-12x+8y=-40
Step 1
Rewrite the equation in vertex form.
Tap for more steps...
Step 1.1
Isolate to the left side of the equation.
Tap for more steps...
Step 1.1.1
Move all terms not containing to the right side of the equation.
Tap for more steps...
Step 1.1.1.1
Subtract from both sides of the equation.
Step 1.1.1.2
Subtract from both sides of the equation.
Step 1.1.2
Divide each term in by and simplify.
Tap for more steps...
Step 1.1.2.1
Divide each term in by .
Step 1.1.2.2
Simplify the left side.
Tap for more steps...
Step 1.1.2.2.1
Cancel the common factor of .
Tap for more steps...
Step 1.1.2.2.1.1
Cancel the common factor.
Step 1.1.2.2.1.2
Divide by .
Step 1.1.2.3
Simplify the right side.
Tap for more steps...
Step 1.1.2.3.1
Simplify each term.
Tap for more steps...
Step 1.1.2.3.1.1
Cancel the common factor of and .
Tap for more steps...
Step 1.1.2.3.1.1.1
Factor out of .
Step 1.1.2.3.1.1.2
Cancel the common factors.
Tap for more steps...
Step 1.1.2.3.1.1.2.1
Factor out of .
Step 1.1.2.3.1.1.2.2
Cancel the common factor.
Step 1.1.2.3.1.1.2.3
Rewrite the expression.
Step 1.1.2.3.1.2
Dividing two negative values results in a positive value.
Step 1.1.2.3.1.3
Cancel the common factor of and .
Tap for more steps...
Step 1.1.2.3.1.3.1
Factor out of .
Step 1.1.2.3.1.3.2
Cancel the common factors.
Tap for more steps...
Step 1.1.2.3.1.3.2.1
Factor out of .
Step 1.1.2.3.1.3.2.2
Cancel the common factor.
Step 1.1.2.3.1.3.2.3
Rewrite the expression.
Step 1.2
Complete the square for .
Tap for more steps...
Step 1.2.1
Move .
Step 1.2.2
Use the form , to find the values of , , and .
Step 1.2.3
Consider the vertex form of a parabola.
Step 1.2.4
Find the value of using the formula .
Tap for more steps...
Step 1.2.4.1
Substitute the values of and into the formula .
Step 1.2.4.2
Simplify the right side.
Tap for more steps...
Step 1.2.4.2.1
Multiply the numerator by the reciprocal of the denominator.
Step 1.2.4.2.2
Cancel the common factor of .
Tap for more steps...
Step 1.2.4.2.2.1
Cancel the common factor.
Step 1.2.4.2.2.2
Rewrite the expression.
Step 1.2.4.2.3
Multiply by .
Step 1.2.4.2.4
Combine and .
Step 1.2.4.2.5
Cancel the common factor of and .
Tap for more steps...
Step 1.2.4.2.5.1
Factor out of .
Step 1.2.4.2.5.2
Cancel the common factors.
Tap for more steps...
Step 1.2.4.2.5.2.1
Factor out of .
Step 1.2.4.2.5.2.2
Cancel the common factor.
Step 1.2.4.2.5.2.3
Rewrite the expression.
Step 1.2.4.2.6
Multiply the numerator by the reciprocal of the denominator.
Step 1.2.4.2.7
Multiply by .
Step 1.2.5
Find the value of using the formula .
Tap for more steps...
Step 1.2.5.1
Substitute the values of , and into the formula .
Step 1.2.5.2
Simplify the right side.
Tap for more steps...
Step 1.2.5.2.1
Simplify each term.
Tap for more steps...
Step 1.2.5.2.1.1
Simplify the numerator.
Tap for more steps...
Step 1.2.5.2.1.1.1
Apply the product rule to .
Step 1.2.5.2.1.1.2
Raise to the power of .
Step 1.2.5.2.1.1.3
Raise to the power of .
Step 1.2.5.2.1.2
Combine and .
Step 1.2.5.2.1.3
Cancel the common factor of and .
Tap for more steps...
Step 1.2.5.2.1.3.1
Factor out of .
Step 1.2.5.2.1.3.2
Cancel the common factors.
Tap for more steps...
Step 1.2.5.2.1.3.2.1
Factor out of .
Step 1.2.5.2.1.3.2.2
Cancel the common factor.
Step 1.2.5.2.1.3.2.3
Rewrite the expression.
Step 1.2.5.2.1.4
Multiply the numerator by the reciprocal of the denominator.
Step 1.2.5.2.1.5
Cancel the common factor of .
Tap for more steps...
Step 1.2.5.2.1.5.1
Factor out of .
Step 1.2.5.2.1.5.2
Cancel the common factor.
Step 1.2.5.2.1.5.3
Rewrite the expression.
Step 1.2.5.2.2
Combine the numerators over the common denominator.
Step 1.2.5.2.3
Subtract from .
Step 1.2.5.2.4
Divide by .
Step 1.2.6
Substitute the values of , , and into the vertex form .
Step 1.3
Set equal to the new right side.
Step 2
Use the vertex form, , to determine the values of , , and .
Step 3
Find the vertex .
Step 4