Precalculus Examples

Find the Domain and Range ((x+4)^2)/9-((y-1)^2)/16=1
Step 1
Subtract from both sides of the equation.
Step 2
Simplify .
Tap for more steps...
Step 2.1
Combine into one fraction.
Tap for more steps...
Step 2.1.1
Write as a fraction with a common denominator.
Step 2.1.2
Combine the numerators over the common denominator.
Step 2.2
Simplify the numerator.
Tap for more steps...
Step 2.2.1
Rewrite as .
Step 2.2.2
Since both terms are perfect squares, factor using the difference of squares formula, where and .
Step 2.2.3
Simplify.
Tap for more steps...
Step 2.2.3.1
Add and .
Step 2.2.3.2
Apply the distributive property.
Step 2.2.3.3
Multiply by .
Step 2.2.3.4
Subtract from .
Step 2.3
Simplify with factoring out.
Tap for more steps...
Step 2.3.1
Factor out of .
Step 2.3.2
Rewrite as .
Step 2.3.3
Factor out of .
Step 2.3.4
Simplify the expression.
Tap for more steps...
Step 2.3.4.1
Rewrite as .
Step 2.3.4.2
Move the negative in front of the fraction.
Step 3
Multiply both sides of the equation by .
Step 4
Simplify both sides of the equation.
Tap for more steps...
Step 4.1
Simplify the left side.
Tap for more steps...
Step 4.1.1
Simplify .
Tap for more steps...
Step 4.1.1.1
Cancel the common factor of .
Tap for more steps...
Step 4.1.1.1.1
Move the leading negative in into the numerator.
Step 4.1.1.1.2
Factor out of .
Step 4.1.1.1.3
Cancel the common factor.
Step 4.1.1.1.4
Rewrite the expression.
Step 4.1.1.2
Multiply.
Tap for more steps...
Step 4.1.1.2.1
Multiply by .
Step 4.1.1.2.2
Multiply by .
Step 4.2
Simplify the right side.
Tap for more steps...
Step 4.2.1
Multiply .
Tap for more steps...
Step 4.2.1.1
Multiply by .
Step 4.2.1.2
Combine and .
Step 5
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Step 6
Simplify .
Tap for more steps...
Step 6.1
Rewrite as .
Tap for more steps...
Step 6.1.1
Factor the perfect power out of .
Step 6.1.2
Factor the perfect power out of .
Step 6.1.3
Rearrange the fraction .
Step 6.2
Pull terms out from under the radical.
Step 6.3
Raise to the power of .
Step 6.4
Combine and .
Step 7
The complete solution is the result of both the positive and negative portions of the solution.
Tap for more steps...
Step 7.1
First, use the positive value of the to find the first solution.
Step 7.2
Add to both sides of the equation.
Step 7.3
Next, use the negative value of the to find the second solution.
Step 7.4
Add to both sides of the equation.
Step 7.5
The complete solution is the result of both the positive and negative portions of the solution.
Step 8
Set the radicand in greater than or equal to to find where the expression is defined.
Step 9
Solve for .
Tap for more steps...
Step 9.1
If any individual factor on the left side of the equation is equal to , the entire expression will be equal to .
Step 9.2
Set equal to and solve for .
Tap for more steps...
Step 9.2.1
Set equal to .
Step 9.2.2
Subtract from both sides of the equation.
Step 9.3
Set equal to and solve for .
Tap for more steps...
Step 9.3.1
Set equal to .
Step 9.3.2
Subtract from both sides of the equation.
Step 9.4
The final solution is all the values that make true.
Step 9.5
Use each root to create test intervals.
Step 9.6
Choose a test value from each interval and plug this value into the original inequality to determine which intervals satisfy the inequality.
Tap for more steps...
Step 9.6.1
Test a value on the interval to see if it makes the inequality true.
Tap for more steps...
Step 9.6.1.1
Choose a value on the interval and see if this value makes the original inequality true.
Step 9.6.1.2
Replace with in the original inequality.
Step 9.6.1.3
The left side is greater than the right side , which means that the given statement is always true.
True
True
Step 9.6.2
Test a value on the interval to see if it makes the inequality true.
Tap for more steps...
Step 9.6.2.1
Choose a value on the interval and see if this value makes the original inequality true.
Step 9.6.2.2
Replace with in the original inequality.
Step 9.6.2.3
The left side is less than the right side , which means that the given statement is false.
False
False
Step 9.6.3
Test a value on the interval to see if it makes the inequality true.
Tap for more steps...
Step 9.6.3.1
Choose a value on the interval and see if this value makes the original inequality true.
Step 9.6.3.2
Replace with in the original inequality.
Step 9.6.3.3
The left side is greater than the right side , which means that the given statement is always true.
True
True
Step 9.6.4
Compare the intervals to determine which ones satisfy the original inequality.
True
False
True
True
False
True
Step 9.7
The solution consists of all of the true intervals.
or
or
Step 10
The domain is all values of that make the expression defined.
Interval Notation:
Set-Builder Notation:
Step 11
The range is the set of all valid values. Use the graph to find the range.
Interval Notation:
Set-Builder Notation:
Step 12
Determine the domain and range.
Domain:
Range:
Step 13