Enter a problem...
Precalculus Examples
Step 1
If a polynomial function has integer coefficients, then every rational zero will have the form where is a factor of the constant and is a factor of the leading coefficient.
Step 2
Find every combination of . These are the possible roots of the polynomial function.
Step 3
Substitute the possible roots one by one into the polynomial to find the actual roots. Simplify to check if the value is , which means it is a root.
Step 4
Step 4.1
Simplify each term.
Step 4.1.1
One to any power is one.
Step 4.1.2
One to any power is one.
Step 4.1.3
Multiply by .
Step 4.1.4
Multiply by .
Step 4.2
Simplify by adding and subtracting.
Step 4.2.1
Subtract from .
Step 4.2.2
Add and .
Step 4.2.3
Subtract from .
Step 5
Since is a known root, divide the polynomial by to find the quotient polynomial. This polynomial can then be used to find the remaining roots.
Step 6
Step 6.1
Place the numbers representing the divisor and the dividend into a division-like configuration.
Step 6.2
The first number in the dividend is put into the first position of the result area (below the horizontal line).
Step 6.3
Multiply the newest entry in the result by the divisor and place the result of under the next term in the dividend .
Step 6.4
Add the product of the multiplication and the number from the dividend and put the result in the next position on the result line.
Step 6.5
Multiply the newest entry in the result by the divisor and place the result of under the next term in the dividend .
Step 6.6
Add the product of the multiplication and the number from the dividend and put the result in the next position on the result line.
Step 6.7
Multiply the newest entry in the result by the divisor and place the result of under the next term in the dividend .
Step 6.8
Add the product of the multiplication and the number from the dividend and put the result in the next position on the result line.
Step 6.9
All numbers except the last become the coefficients of the quotient polynomial. The last value in the result line is the remainder.
Step 6.10
Simplify the quotient polynomial.
Step 7
Step 7.1
Subtract from both sides of the equation.
Step 7.2
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Step 7.3
Simplify .
Step 7.3.1
Rewrite as .
Step 7.3.2
Rewrite as .
Step 7.3.3
Rewrite as .
Step 7.3.4
Rewrite as .
Step 7.3.5
Pull terms out from under the radical, assuming positive real numbers.
Step 7.3.6
Move to the left of .
Step 7.4
The complete solution is the result of both the positive and negative portions of the solution.
Step 7.4.1
First, use the positive value of the to find the first solution.
Step 7.4.2
Next, use the negative value of the to find the second solution.
Step 7.4.3
The complete solution is the result of both the positive and negative portions of the solution.
Step 8
The polynomial can be written as a set of linear factors.
Step 9
These are the roots (zeros) of the polynomial .
Step 10