Precalculus Examples

Split Using Partial Fraction Decomposition (10x+20)/(x^3-2x^2-4x+8)
Step 1
Decompose the fraction and multiply through by the common denominator.
Tap for more steps...
Step 1.1
Factor the fraction.
Tap for more steps...
Step 1.1.1
Factor out of .
Tap for more steps...
Step 1.1.1.1
Factor out of .
Step 1.1.1.2
Factor out of .
Step 1.1.1.3
Factor out of .
Step 1.1.2
Factor out the greatest common factor from each group.
Tap for more steps...
Step 1.1.2.1
Group the first two terms and the last two terms.
Step 1.1.2.2
Factor out the greatest common factor (GCF) from each group.
Step 1.1.3
Factor the polynomial by factoring out the greatest common factor, .
Step 1.1.4
Rewrite as .
Step 1.1.5
Factor.
Tap for more steps...
Step 1.1.5.1
Since both terms are perfect squares, factor using the difference of squares formula, where and .
Step 1.1.5.2
Remove unnecessary parentheses.
Step 1.1.6
Combine exponents.
Tap for more steps...
Step 1.1.6.1
Raise to the power of .
Step 1.1.6.2
Raise to the power of .
Step 1.1.6.3
Use the power rule to combine exponents.
Step 1.1.6.4
Add and .
Step 1.1.7
Reduce the expression by cancelling the common factors.
Tap for more steps...
Step 1.1.7.1
Cancel the common factor.
Step 1.1.7.2
Rewrite the expression.
Step 1.2
For each factor in the denominator, create a new fraction using the factor as the denominator, and an unknown value as the numerator. Since the factor in the denominator is linear, put a single variable in its place .
Step 1.3
For each factor in the denominator, create a new fraction using the factor as the denominator, and an unknown value as the numerator. Since the factor in the denominator is linear, put a single variable in its place .
Step 1.4
Multiply each fraction in the equation by the denominator of the original expression. In this case, the denominator is .
Step 1.5
Cancel the common factor of .
Tap for more steps...
Step 1.5.1
Cancel the common factor.
Step 1.5.2
Divide by .
Step 1.6
Simplify each term.
Tap for more steps...
Step 1.6.1
Cancel the common factor of .
Tap for more steps...
Step 1.6.1.1
Cancel the common factor.
Step 1.6.1.2
Divide by .
Step 1.6.2
Cancel the common factor of and .
Tap for more steps...
Step 1.6.2.1
Factor out of .
Step 1.6.2.2
Cancel the common factors.
Tap for more steps...
Step 1.6.2.2.1
Multiply by .
Step 1.6.2.2.2
Cancel the common factor.
Step 1.6.2.2.3
Rewrite the expression.
Step 1.6.2.2.4
Divide by .
Step 1.6.3
Apply the distributive property.
Step 1.6.4
Move to the left of .
Step 1.7
Reorder and .
Step 2
Create equations for the partial fraction variables and use them to set up a system of equations.
Tap for more steps...
Step 2.1
Create an equation for the partial fraction variables by equating the coefficients of from each side of the equation. For the equation to be equal, the equivalent coefficients on each side of the equation must be equal.
Step 2.2
Create an equation for the partial fraction variables by equating the coefficients of the terms not containing . For the equation to be equal, the equivalent coefficients on each side of the equation must be equal.
Step 2.3
Set up the system of equations to find the coefficients of the partial fractions.
Step 3
Solve the system of equations.
Tap for more steps...
Step 3.1
Rewrite the equation as .
Step 3.2
Replace all occurrences of with in each equation.
Tap for more steps...
Step 3.2.1
Replace all occurrences of in with .
Step 3.2.2
Simplify the right side.
Tap for more steps...
Step 3.2.2.1
Simplify .
Tap for more steps...
Step 3.2.2.1.1
Multiply by .
Step 3.2.2.1.2
Add and .
Step 3.3
Rewrite the equation as .
Step 3.4
Solve the system of equations.
Step 3.5
List all of the solutions.
Step 4
Replace each of the partial fraction coefficients in with the values found for and .