Precalculus Examples

Find the Domain ( square root of x^2-16)/((x^2)/(x^2+1))
Step 1
Set the radicand in greater than or equal to to find where the expression is defined.
Step 2
Solve for .
Tap for more steps...
Step 2.1
Add to both sides of the inequality.
Step 2.2
Take the specified root of both sides of the inequality to eliminate the exponent on the left side.
Step 2.3
Simplify the equation.
Tap for more steps...
Step 2.3.1
Simplify the left side.
Tap for more steps...
Step 2.3.1.1
Pull terms out from under the radical.
Step 2.3.2
Simplify the right side.
Tap for more steps...
Step 2.3.2.1
Simplify .
Tap for more steps...
Step 2.3.2.1.1
Rewrite as .
Step 2.3.2.1.2
Pull terms out from under the radical.
Step 2.3.2.1.3
The absolute value is the distance between a number and zero. The distance between and is .
Step 2.4
Write as a piecewise.
Tap for more steps...
Step 2.4.1
To find the interval for the first piece, find where the inside of the absolute value is non-negative.
Step 2.4.2
In the piece where is non-negative, remove the absolute value.
Step 2.4.3
To find the interval for the second piece, find where the inside of the absolute value is negative.
Step 2.4.4
In the piece where is negative, remove the absolute value and multiply by .
Step 2.4.5
Write as a piecewise.
Step 2.5
Find the intersection of and .
Step 2.6
Divide each term in by and simplify.
Tap for more steps...
Step 2.6.1
Divide each term in by . When multiplying or dividing both sides of an inequality by a negative value, flip the direction of the inequality sign.
Step 2.6.2
Simplify the left side.
Tap for more steps...
Step 2.6.2.1
Dividing two negative values results in a positive value.
Step 2.6.2.2
Divide by .
Step 2.6.3
Simplify the right side.
Tap for more steps...
Step 2.6.3.1
Divide by .
Step 2.7
Find the union of the solutions.
or
or
Step 3
Set the denominator in equal to to find where the expression is undefined.
Step 4
Solve for .
Tap for more steps...
Step 4.1
Subtract from both sides of the equation.
Step 4.2
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Step 4.3
Rewrite as .
Step 4.4
The complete solution is the result of both the positive and negative portions of the solution.
Tap for more steps...
Step 4.4.1
First, use the positive value of the to find the first solution.
Step 4.4.2
Next, use the negative value of the to find the second solution.
Step 4.4.3
The complete solution is the result of both the positive and negative portions of the solution.
Step 5
Set the denominator in equal to to find where the expression is undefined.
Step 6
Solve for .
Tap for more steps...
Step 6.1
Set the numerator equal to zero.
Step 6.2
Solve the equation for .
Tap for more steps...
Step 6.2.1
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Step 6.2.2
Simplify .
Tap for more steps...
Step 6.2.2.1
Rewrite as .
Step 6.2.2.2
Pull terms out from under the radical, assuming positive real numbers.
Step 6.2.2.3
Plus or minus is .
Step 7
The domain is all values of that make the expression defined.
Interval Notation:
Set-Builder Notation:
Step 8