Enter a problem...
Precalculus Examples
Step 1
Move the negative in front of the fraction.
Step 2
Step 2.1
Finding the LCD of a list of values is the same as finding the LCM of the denominators of those values.
Step 2.2
The LCM of one and any expression is the expression.
Step 3
Step 3.1
Multiply each term in by .
Step 3.2
Simplify the left side.
Step 3.2.1
Expand using the FOIL Method.
Step 3.2.1.1
Apply the distributive property.
Step 3.2.1.2
Apply the distributive property.
Step 3.2.1.3
Apply the distributive property.
Step 3.2.2
Simplify and combine like terms.
Step 3.2.2.1
Simplify each term.
Step 3.2.2.1.1
Multiply by .
Step 3.2.2.1.2
Move to the left of .
Step 3.2.2.1.3
Multiply by .
Step 3.2.2.2
Subtract from .
Step 3.2.3
Apply the distributive property.
Step 3.2.4
Simplify.
Step 3.2.4.1
Multiply by by adding the exponents.
Step 3.2.4.1.1
Move .
Step 3.2.4.1.2
Multiply by .
Step 3.2.4.1.2.1
Raise to the power of .
Step 3.2.4.1.2.2
Use the power rule to combine exponents.
Step 3.2.4.1.3
Add and .
Step 3.2.4.2
Rewrite using the commutative property of multiplication.
Step 3.2.4.3
Move to the left of .
Step 3.2.5
Multiply by by adding the exponents.
Step 3.2.5.1
Move .
Step 3.2.5.2
Multiply by .
Step 3.3
Simplify the right side.
Step 3.3.1
Cancel the common factor of .
Step 3.3.1.1
Move the leading negative in into the numerator.
Step 3.3.1.2
Cancel the common factor.
Step 3.3.1.3
Rewrite the expression.
Step 4
Step 4.1
Add to both sides of the equation.
Step 4.2
Factor out of .
Step 4.2.1
Factor out of .
Step 4.2.2
Factor out of .
Step 4.2.3
Factor out of .
Step 4.2.4
Factor out of .
Step 4.2.5
Factor out of .
Step 4.2.6
Factor out of .
Step 4.2.7
Factor out of .
Step 4.3
If any individual factor on the left side of the equation is equal to , the entire expression will be equal to .
Step 4.4
Set equal to .
Step 4.5
Set equal to and solve for .
Step 4.5.1
Set equal to .
Step 4.5.2
Solve for .
Step 4.5.2.1
Use the quadratic formula to find the solutions.
Step 4.5.2.2
Substitute the values , , and into the quadratic formula and solve for .
Step 4.5.2.3
Simplify.
Step 4.5.2.3.1
Simplify the numerator.
Step 4.5.2.3.1.1
Add parentheses.
Step 4.5.2.3.1.2
Let . Substitute for all occurrences of .
Step 4.5.2.3.1.2.1
Apply the product rule to .
Step 4.5.2.3.1.2.2
Raise to the power of .
Step 4.5.2.3.1.3
Factor out of .
Step 4.5.2.3.1.3.1
Factor out of .
Step 4.5.2.3.1.3.2
Factor out of .
Step 4.5.2.3.1.3.3
Factor out of .
Step 4.5.2.3.1.4
Replace all occurrences of with .
Step 4.5.2.3.1.5
Simplify.
Step 4.5.2.3.1.5.1
Simplify each term.
Step 4.5.2.3.1.5.1.1
Apply the distributive property.
Step 4.5.2.3.1.5.1.2
Rewrite using the commutative property of multiplication.
Step 4.5.2.3.1.5.1.3
Move to the left of .
Step 4.5.2.3.1.5.1.4
Multiply by by adding the exponents.
Step 4.5.2.3.1.5.1.4.1
Move .
Step 4.5.2.3.1.5.1.4.2
Multiply by .
Step 4.5.2.3.1.5.1.5
Apply the distributive property.
Step 4.5.2.3.1.5.1.6
Multiply by .
Step 4.5.2.3.1.5.1.7
Multiply by .
Step 4.5.2.3.1.5.2
Subtract from .
Step 4.5.2.3.1.6
Factor out of .
Step 4.5.2.3.1.6.1
Factor out of .
Step 4.5.2.3.1.6.2
Factor out of .
Step 4.5.2.3.1.6.3
Factor out of .
Step 4.5.2.3.1.7
Rewrite as .
Step 4.5.2.3.1.7.1
Rewrite as .
Step 4.5.2.3.1.7.2
Rewrite as .
Step 4.5.2.3.1.7.3
Add parentheses.
Step 4.5.2.3.1.8
Pull terms out from under the radical.
Step 4.5.2.3.1.9
Raise to the power of .
Step 4.5.2.3.2
Simplify .
Step 4.5.2.4
The final answer is the combination of both solutions.
Step 4.6
The final solution is all the values that make true.