Enter a problem...
Precalculus Examples
Step 1
Step 1.1
Simplify each term.
Step 1.1.1
Multiply the numerator and denominator of by the conjugate of to make the denominator real.
Step 1.1.2
Multiply.
Step 1.1.2.1
Combine.
Step 1.1.2.2
Simplify the numerator.
Step 1.1.2.2.1
Expand using the FOIL Method.
Step 1.1.2.2.1.1
Apply the distributive property.
Step 1.1.2.2.1.2
Apply the distributive property.
Step 1.1.2.2.1.3
Apply the distributive property.
Step 1.1.2.2.2
Simplify and combine like terms.
Step 1.1.2.2.2.1
Simplify each term.
Step 1.1.2.2.2.1.1
Multiply by .
Step 1.1.2.2.2.1.2
Multiply by .
Step 1.1.2.2.2.1.3
Multiply by .
Step 1.1.2.2.2.1.4
Multiply .
Step 1.1.2.2.2.1.4.1
Multiply by .
Step 1.1.2.2.2.1.4.2
Raise to the power of .
Step 1.1.2.2.2.1.4.3
Raise to the power of .
Step 1.1.2.2.2.1.4.4
Use the power rule to combine exponents.
Step 1.1.2.2.2.1.4.5
Add and .
Step 1.1.2.2.2.1.5
Rewrite as .
Step 1.1.2.2.2.1.6
Multiply by .
Step 1.1.2.2.2.2
Subtract from .
Step 1.1.2.2.2.3
Add and .
Step 1.1.2.2.2.4
Add and .
Step 1.1.2.3
Simplify the denominator.
Step 1.1.2.3.1
Expand using the FOIL Method.
Step 1.1.2.3.1.1
Apply the distributive property.
Step 1.1.2.3.1.2
Apply the distributive property.
Step 1.1.2.3.1.3
Apply the distributive property.
Step 1.1.2.3.2
Simplify.
Step 1.1.2.3.2.1
Multiply by .
Step 1.1.2.3.2.2
Multiply by .
Step 1.1.2.3.2.3
Multiply by .
Step 1.1.2.3.2.4
Multiply by .
Step 1.1.2.3.2.5
Raise to the power of .
Step 1.1.2.3.2.6
Raise to the power of .
Step 1.1.2.3.2.7
Use the power rule to combine exponents.
Step 1.1.2.3.2.8
Add and .
Step 1.1.2.3.2.9
Subtract from .
Step 1.1.2.3.2.10
Add and .
Step 1.1.2.3.3
Simplify each term.
Step 1.1.2.3.3.1
Rewrite as .
Step 1.1.2.3.3.2
Multiply by .
Step 1.1.2.3.4
Add and .
Step 1.1.3
Cancel the common factor of .
Step 1.1.3.1
Cancel the common factor.
Step 1.1.3.2
Divide by .
Step 1.1.4
Multiply the numerator and denominator of by the conjugate of to make the denominator real.
Step 1.1.5
Multiply.
Step 1.1.5.1
Combine.
Step 1.1.5.2
Simplify the numerator.
Step 1.1.5.2.1
Expand using the FOIL Method.
Step 1.1.5.2.1.1
Apply the distributive property.
Step 1.1.5.2.1.2
Apply the distributive property.
Step 1.1.5.2.1.3
Apply the distributive property.
Step 1.1.5.2.2
Simplify and combine like terms.
Step 1.1.5.2.2.1
Simplify each term.
Step 1.1.5.2.2.1.1
Multiply by .
Step 1.1.5.2.2.1.2
Multiply by .
Step 1.1.5.2.2.1.3
Multiply by .
Step 1.1.5.2.2.1.4
Multiply .
Step 1.1.5.2.2.1.4.1
Multiply by .
Step 1.1.5.2.2.1.4.2
Raise to the power of .
Step 1.1.5.2.2.1.4.3
Raise to the power of .
Step 1.1.5.2.2.1.4.4
Use the power rule to combine exponents.
Step 1.1.5.2.2.1.4.5
Add and .
Step 1.1.5.2.2.1.5
Rewrite as .
Step 1.1.5.2.2.1.6
Multiply by .
Step 1.1.5.2.2.2
Subtract from .
Step 1.1.5.2.2.3
Subtract from .
Step 1.1.5.3
Simplify the denominator.
Step 1.1.5.3.1
Expand using the FOIL Method.
Step 1.1.5.3.1.1
Apply the distributive property.
Step 1.1.5.3.1.2
Apply the distributive property.
Step 1.1.5.3.1.3
Apply the distributive property.
Step 1.1.5.3.2
Simplify.
Step 1.1.5.3.2.1
Multiply by .
Step 1.1.5.3.2.2
Multiply by .
Step 1.1.5.3.2.3
Multiply by .
Step 1.1.5.3.2.4
Multiply by .
Step 1.1.5.3.2.5
Raise to the power of .
Step 1.1.5.3.2.6
Raise to the power of .
Step 1.1.5.3.2.7
Use the power rule to combine exponents.
Step 1.1.5.3.2.8
Add and .
Step 1.1.5.3.2.9
Add and .
Step 1.1.5.3.2.10
Add and .
Step 1.1.5.3.3
Simplify each term.
Step 1.1.5.3.3.1
Rewrite as .
Step 1.1.5.3.3.2
Multiply by .
Step 1.1.5.3.4
Add and .
Step 1.1.6
Split the fraction into two fractions.
Step 1.1.7
Move the negative in front of the fraction.
Step 1.2
To write as a fraction with a common denominator, multiply by .
Step 1.3
Combine fractions.
Step 1.3.1
Combine and .
Step 1.3.2
Combine the numerators over the common denominator.
Step 1.4
Move the negative in front of the fraction.
Step 1.5
Combine fractions.
Step 1.5.1
Combine the numerators over the common denominator.
Step 1.5.2
Combine and .
Step 1.6
Multiply the numerator by the reciprocal of the denominator.
Step 1.7
Multiply by .
Step 1.8
Reorder factors in .
Step 2
Step 2.1
Finding the LCD of a list of values is the same as finding the LCM of the denominators of those values.
Step 2.2
The LCM of one and any expression is the expression.
Step 3
Step 3.1
Multiply each term in by .
Step 3.2
Simplify the left side.
Step 3.2.1
Rewrite using the commutative property of multiplication.
Step 3.2.2
Cancel the common factor of .
Step 3.2.2.1
Factor out of .
Step 3.2.2.2
Cancel the common factor.
Step 3.2.2.3
Rewrite the expression.
Step 3.2.3
Cancel the common factor of .
Step 3.2.3.1
Cancel the common factor.
Step 3.2.3.2
Rewrite the expression.
Step 3.2.4
Apply the distributive property.
Step 3.2.5
Simplify the expression.
Step 3.2.5.1
Move to the left of .
Step 3.2.5.2
Reorder factors in .
Step 3.3
Simplify the right side.
Step 3.3.1
Multiply by .
Step 4
Step 4.1
Rewrite the equation as .
Step 4.2
Divide each term in by and simplify.
Step 4.2.1
Divide each term in by .
Step 4.2.2
Simplify the left side.
Step 4.2.2.1
Cancel the common factor of .
Step 4.2.2.1.1
Cancel the common factor.
Step 4.2.2.1.2
Divide by .
Step 4.2.3
Simplify the right side.
Step 4.2.3.1
Move the negative in front of the fraction.