Enter a problem...
Precalculus Examples
Step 1
Subtract from both sides of the equation.
Step 2
Step 2.1
Add to both sides of the equation.
Step 2.2
To write as a fraction with a common denominator, multiply by .
Step 2.3
To write as a fraction with a common denominator, multiply by .
Step 2.4
Write each expression with a common denominator of , by multiplying each by an appropriate factor of .
Step 2.4.1
Multiply by .
Step 2.4.2
Multiply by .
Step 2.4.3
Reorder the factors of .
Step 2.5
Combine the numerators over the common denominator.
Step 2.6
Simplify the numerator.
Step 2.6.1
Rewrite as .
Step 2.6.2
Expand using the FOIL Method.
Step 2.6.2.1
Apply the distributive property.
Step 2.6.2.2
Apply the distributive property.
Step 2.6.2.3
Apply the distributive property.
Step 2.6.3
Simplify and combine like terms.
Step 2.6.3.1
Simplify each term.
Step 2.6.3.1.1
Multiply by .
Step 2.6.3.1.2
Rewrite using the commutative property of multiplication.
Step 2.6.3.1.3
Rewrite using the commutative property of multiplication.
Step 2.6.3.1.4
Multiply by by adding the exponents.
Step 2.6.3.1.4.1
Move .
Step 2.6.3.1.4.2
Multiply by .
Step 2.6.3.1.5
Multiply by .
Step 2.6.3.1.6
Multiply by .
Step 2.6.3.2
Subtract from .
Step 2.6.3.2.1
Move .
Step 2.6.3.2.2
Subtract from .
Step 2.6.4
Apply the distributive property.
Step 2.6.5
Rewrite as .
Step 2.6.6
Expand using the FOIL Method.
Step 2.6.6.1
Apply the distributive property.
Step 2.6.6.2
Apply the distributive property.
Step 2.6.6.3
Apply the distributive property.
Step 2.6.7
Simplify and combine like terms.
Step 2.6.7.1
Simplify each term.
Step 2.6.7.1.1
Multiply by .
Step 2.6.7.1.2
Rewrite using the commutative property of multiplication.
Step 2.6.7.1.3
Rewrite using the commutative property of multiplication.
Step 2.6.7.1.4
Multiply by by adding the exponents.
Step 2.6.7.1.4.1
Move .
Step 2.6.7.1.4.2
Multiply by .
Step 2.6.7.1.5
Multiply by .
Step 2.6.7.1.6
Multiply by .
Step 2.6.7.2
Subtract from .
Step 2.6.7.2.1
Move .
Step 2.6.7.2.2
Subtract from .
Step 2.6.8
Apply the distributive property.
Step 3
Multiply both sides by .
Step 4
Step 4.1
Simplify the left side.
Step 4.1.1
Simplify .
Step 4.1.1.1
Cancel the common factor of .
Step 4.1.1.1.1
Cancel the common factor.
Step 4.1.1.1.2
Rewrite the expression.
Step 4.1.1.2
Simplify the expression.
Step 4.1.1.2.1
Reorder and .
Step 4.1.1.2.2
Move .
Step 4.1.1.2.3
Move .
Step 4.1.1.2.4
Reorder and .
Step 4.1.1.2.5
Move .
Step 4.1.1.2.6
Move .
Step 4.1.1.2.7
Move .
Step 4.1.1.2.8
Reorder and .
Step 4.2
Simplify the right side.
Step 4.2.1
Multiply by .
Step 5
Step 5.1
Subtract from both sides of the equation.
Step 5.2
Use the quadratic formula to find the solutions.
Step 5.3
Substitute the values , , and into the quadratic formula and solve for .
Step 5.4
Simplify.
Step 5.4.1
Simplify the numerator.
Step 5.4.1.1
Rewrite as .
Step 5.4.1.2
Let . Substitute for all occurrences of .
Step 5.4.1.2.1
Use the power rule to distribute the exponent.
Step 5.4.1.2.1.1
Apply the product rule to .
Step 5.4.1.2.1.2
Apply the product rule to .
Step 5.4.1.2.2
Raise to the power of .
Step 5.4.1.2.3
Multiply the exponents in .
Step 5.4.1.2.3.1
Apply the power rule and multiply exponents, .
Step 5.4.1.2.3.2
Multiply by .
Step 5.4.1.3
Factor out of .
Step 5.4.1.3.1
Factor out of .
Step 5.4.1.3.2
Factor out of .
Step 5.4.1.3.3
Factor out of .
Step 5.4.1.4
Replace all occurrences of with .
Step 5.4.1.5
Simplify.
Step 5.4.1.5.1
Simplify each term.
Step 5.4.1.5.1.1
Simplify each term.
Step 5.4.1.5.1.1.1
Apply the product rule to .
Step 5.4.1.5.1.1.2
Apply the product rule to .
Step 5.4.1.5.1.1.3
Apply the product rule to .
Step 5.4.1.5.1.1.4
Apply the product rule to .
Step 5.4.1.5.1.2
Apply the distributive property.
Step 5.4.1.5.1.3
Simplify.
Step 5.4.1.5.1.3.1
Rewrite using the commutative property of multiplication.
Step 5.4.1.5.1.3.2
Multiply by by adding the exponents.
Step 5.4.1.5.1.3.2.1
Move .
Step 5.4.1.5.1.3.2.2
Use the power rule to combine exponents.
Step 5.4.1.5.1.3.2.3
Add and .
Step 5.4.1.5.1.3.3
Rewrite using the commutative property of multiplication.
Step 5.4.1.5.1.4
Multiply by by adding the exponents.
Step 5.4.1.5.1.4.1
Move .
Step 5.4.1.5.1.4.2
Use the power rule to combine exponents.
Step 5.4.1.5.1.4.3
Add and .
Step 5.4.1.5.1.5
Apply the distributive property.
Step 5.4.1.5.1.6
Simplify.
Step 5.4.1.5.1.6.1
Multiply by .
Step 5.4.1.5.1.6.2
Multiply .
Step 5.4.1.5.1.6.2.1
Multiply by .
Step 5.4.1.5.1.6.2.2
Multiply by .
Step 5.4.1.5.1.7
Remove parentheses.
Step 5.4.1.5.2
Combine the opposite terms in .
Step 5.4.1.5.2.1
Subtract from .
Step 5.4.1.5.2.2
Add and .
Step 5.4.1.6
Factor out of .
Step 5.4.1.6.1
Factor out of .
Step 5.4.1.6.2
Factor out of .
Step 5.4.1.6.3
Factor out of .
Step 5.4.1.6.4
Factor out of .
Step 5.4.1.6.5
Factor out of .
Step 5.4.1.6.6
Factor out of .
Step 5.4.1.6.7
Factor out of .
Step 5.4.1.7
Rewrite as .
Step 5.4.1.8
Reorder and .
Step 5.4.1.9
Since both terms are perfect squares, factor using the difference of squares formula, where and .
Step 5.4.1.10
Factor.
Step 5.4.1.11
Rewrite as .
Step 5.4.1.11.1
Rewrite as .
Step 5.4.1.11.2
Rewrite as .
Step 5.4.1.11.3
Add parentheses.
Step 5.4.1.12
Pull terms out from under the radical.
Step 5.4.2
Simplify .
Step 5.5
The final answer is the combination of both solutions.