Precalculus Examples

Find the Properties (x+3)^2=-2(y-1)
Step 1
Isolate to the left side of the equation.
Tap for more steps...
Step 1.1
Rewrite the equation as .
Step 1.2
Divide each term in by and simplify.
Tap for more steps...
Step 1.2.1
Divide each term in by .
Step 1.2.2
Simplify the left side.
Tap for more steps...
Step 1.2.2.1
Cancel the common factor of .
Tap for more steps...
Step 1.2.2.1.1
Cancel the common factor.
Step 1.2.2.1.2
Divide by .
Step 1.2.3
Simplify the right side.
Tap for more steps...
Step 1.2.3.1
Move the negative in front of the fraction.
Step 1.3
Add to both sides of the equation.
Step 1.4
Reorder terms.
Step 2
Use the vertex form, , to determine the values of , , and .
Step 3
Since the value of is negative, the parabola opens down.
Opens Down
Step 4
Find the vertex .
Step 5
Find , the distance from the vertex to the focus.
Tap for more steps...
Step 5.1
Find the distance from the vertex to a focus of the parabola by using the following formula.
Step 5.2
Substitute the value of into the formula.
Step 5.3
Simplify.
Tap for more steps...
Step 5.3.1
Cancel the common factor of and .
Tap for more steps...
Step 5.3.1.1
Rewrite as .
Step 5.3.1.2
Move the negative in front of the fraction.
Step 5.3.2
Combine and .
Step 5.3.3
Divide by .
Step 6
Find the focus.
Tap for more steps...
Step 6.1
The focus of a parabola can be found by adding to the y-coordinate if the parabola opens up or down.
Step 6.2
Substitute the known values of , , and into the formula and simplify.
Step 7
Find the axis of symmetry by finding the line that passes through the vertex and the focus.
Step 8
Find the directrix.
Tap for more steps...
Step 8.1
The directrix of a parabola is the horizontal line found by subtracting from the y-coordinate of the vertex if the parabola opens up or down.
Step 8.2
Substitute the known values of and into the formula and simplify.
Step 9
Use the properties of the parabola to analyze and graph the parabola.
Direction: Opens Down
Vertex:
Focus:
Axis of Symmetry:
Directrix:
Step 10