Enter a problem...
Precalculus Examples
3log(x+5)+23log(x+5)+2
Step 1
Write 3log(x+5)+23log(x+5)+2 as an equation.
y=3log(x+5)+2y=3log(x+5)+2
Step 2
Step 2.1
To find the x-intercept(s), substitute in 00 for yy and solve for xx.
0=3log(x+5)+20=3log(x+5)+2
Step 2.2
Solve the equation.
Step 2.2.1
Rewrite the equation as 3log(x+5)+2=03log(x+5)+2=0.
3log(x+5)+2=03log(x+5)+2=0
Step 2.2.2
Subtract 22 from both sides of the equation.
3log(x+5)=-23log(x+5)=−2
Step 2.2.3
Divide each term in 3log(x+5)=-23log(x+5)=−2 by 33 and simplify.
Step 2.2.3.1
Divide each term in 3log(x+5)=-23log(x+5)=−2 by 33.
3log(x+5)3=-233log(x+5)3=−23
Step 2.2.3.2
Simplify the left side.
Step 2.2.3.2.1
Cancel the common factor of 33.
Step 2.2.3.2.1.1
Cancel the common factor.
3log(x+5)3=-233log(x+5)3=−23
Step 2.2.3.2.1.2
Divide log(x+5)log(x+5) by 11.
log(x+5)=-23log(x+5)=−23
log(x+5)=-23log(x+5)=−23
log(x+5)=-23log(x+5)=−23
Step 2.2.3.3
Simplify the right side.
Step 2.2.3.3.1
Move the negative in front of the fraction.
log(x+5)=-23log(x+5)=−23
log(x+5)=-23log(x+5)=−23
log(x+5)=-23log(x+5)=−23
Step 2.2.4
Rewrite log(x+5)=-23log(x+5)=−23 in exponential form using the definition of a logarithm. If xx and bb are positive real numbers and b≠1b≠1, then logb(x)=ylogb(x)=y is equivalent to by=xby=x.
10-23=x+510−23=x+5
Step 2.2.5
Solve for xx.
Step 2.2.5.1
Rewrite the equation as x+5=10-23x+5=10−23.
x+5=10-23x+5=10−23
Step 2.2.5.2
Rewrite the expression using the negative exponent rule b-n=1bnb−n=1bn.
x+5=11023x+5=11023
Step 2.2.5.3
Subtract 55 from both sides of the equation.
x=11023-5x=11023−5
x=11023-5x=11023−5
x=11023-5x=11023−5
Step 2.3
x-intercept(s) in point form.
x-intercept(s): (11023-5,0)(11023−5,0)
x-intercept(s): (11023-5,0)(11023−5,0)
Step 3
Step 3.1
To find the y-intercept(s), substitute in 00 for xx and solve for yy.
y=3log((0)+5)+2y=3log((0)+5)+2
Step 3.2
Solve the equation.
Step 3.2.1
Remove parentheses.
y=3log(0+5)+2y=3log(0+5)+2
Step 3.2.2
Remove parentheses.
y=3log((0)+5)+2y=3log((0)+5)+2
Step 3.2.3
Simplify each term.
Step 3.2.3.1
Add 00 and 55.
y=3log(5)+2y=3log(5)+2
Step 3.2.3.2
Simplify 3log(5)3log(5) by moving 33 inside the logarithm.
y=log(53)+2y=log(53)+2
Step 3.2.3.3
Raise 55 to the power of 33.
y=log(125)+2y=log(125)+2
y=log(125)+2y=log(125)+2
y=log(125)+2y=log(125)+2
Step 3.3
y-intercept(s) in point form.
y-intercept(s): (0,log(125)+2)(0,log(125)+2)
y-intercept(s): (0,log(125)+2)(0,log(125)+2)
Step 4
List the intersections.
x-intercept(s): (11023-5,0)(11023−5,0)
y-intercept(s): (0,log(125)+2)(0,log(125)+2)
Step 5