Precalculus Examples

Find the Equation of the Circle (-4,3) r = square root of 7
(-4,3)(4,3) r=7
Step 1
The standard form of a circle is x2 plus y2 equals the radius squared r2. The horizontal h and vertical k translations represent the center of the circle. The formula is derived from the distance formula where the distance between the center and every point on the circle is equal to the length of the radius.
(x-h)2+(y-k)2=r2
Step 2
Fill in the values of h and k which represent the center of the circle.
(x+4)2+(y-3)2=r2
Step 3
Fill in the value of r which represents the radius of the circle.
(x+4)2+(y-3)2=(7)2
Step 4
Simplify.
Tap for more steps...
Step 4.1
Remove parentheses.
(x+4)2+(y-3)2=72
Step 4.2
Rewrite 72 as 7.
Tap for more steps...
Step 4.2.1
Use nax=axn to rewrite 7 as 712.
(x+4)2+(y-3)2=(712)2
Step 4.2.2
Apply the power rule and multiply exponents, (am)n=amn.
(x+4)2+(y-3)2=7122
Step 4.2.3
Combine 12 and 2.
(x+4)2+(y-3)2=722
Step 4.2.4
Cancel the common factor of 2.
Tap for more steps...
Step 4.2.4.1
Cancel the common factor.
(x+4)2+(y-3)2=722
Step 4.2.4.2
Rewrite the expression.
(x+4)2+(y-3)2=71
(x+4)2+(y-3)2=71
Step 4.2.5
Evaluate the exponent.
(x+4)2+(y-3)2=7
(x+4)2+(y-3)2=7
(x+4)2+(y-3)2=7
Step 5
image of graph
(
(
)
)
|
|
[
[
]
]
7
7
8
8
9
9
°
°
θ
θ
4
4
5
5
6
6
/
/
^
^
×
×
>
>
π
π
1
1
2
2
3
3
-
-
+
+
÷
÷
<
<
,
,
0
0
.
.
%
%
=
=
 [x2  12  π  xdx ]