Precalculus Examples

Identify the Zeros and Their Multiplicities f(x)=x^3-2x^2+2x
Step 1
Set equal to .
Step 2
Solve for .
Tap for more steps...
Step 2.1
Factor out of .
Tap for more steps...
Step 2.1.1
Factor out of .
Step 2.1.2
Factor out of .
Step 2.1.3
Factor out of .
Step 2.1.4
Factor out of .
Step 2.1.5
Factor out of .
Step 2.2
If any individual factor on the left side of the equation is equal to , the entire expression will be equal to .
Step 2.3
Set equal to .
Step 2.4
Set equal to and solve for .
Tap for more steps...
Step 2.4.1
Set equal to .
Step 2.4.2
Solve for .
Tap for more steps...
Step 2.4.2.1
Use the quadratic formula to find the solutions.
Step 2.4.2.2
Substitute the values , , and into the quadratic formula and solve for .
Step 2.4.2.3
Simplify.
Tap for more steps...
Step 2.4.2.3.1
Simplify the numerator.
Tap for more steps...
Step 2.4.2.3.1.1
Raise to the power of .
Step 2.4.2.3.1.2
Multiply .
Tap for more steps...
Step 2.4.2.3.1.2.1
Multiply by .
Step 2.4.2.3.1.2.2
Multiply by .
Step 2.4.2.3.1.3
Subtract from .
Step 2.4.2.3.1.4
Rewrite as .
Step 2.4.2.3.1.5
Rewrite as .
Step 2.4.2.3.1.6
Rewrite as .
Step 2.4.2.3.1.7
Rewrite as .
Step 2.4.2.3.1.8
Pull terms out from under the radical, assuming positive real numbers.
Step 2.4.2.3.1.9
Move to the left of .
Step 2.4.2.3.2
Multiply by .
Step 2.4.2.3.3
Simplify .
Step 2.4.2.4
Simplify the expression to solve for the portion of the .
Tap for more steps...
Step 2.4.2.4.1
Simplify the numerator.
Tap for more steps...
Step 2.4.2.4.1.1
Raise to the power of .
Step 2.4.2.4.1.2
Multiply .
Tap for more steps...
Step 2.4.2.4.1.2.1
Multiply by .
Step 2.4.2.4.1.2.2
Multiply by .
Step 2.4.2.4.1.3
Subtract from .
Step 2.4.2.4.1.4
Rewrite as .
Step 2.4.2.4.1.5
Rewrite as .
Step 2.4.2.4.1.6
Rewrite as .
Step 2.4.2.4.1.7
Rewrite as .
Step 2.4.2.4.1.8
Pull terms out from under the radical, assuming positive real numbers.
Step 2.4.2.4.1.9
Move to the left of .
Step 2.4.2.4.2
Multiply by .
Step 2.4.2.4.3
Simplify .
Step 2.4.2.4.4
Change the to .
Step 2.4.2.5
Simplify the expression to solve for the portion of the .
Tap for more steps...
Step 2.4.2.5.1
Simplify the numerator.
Tap for more steps...
Step 2.4.2.5.1.1
Raise to the power of .
Step 2.4.2.5.1.2
Multiply .
Tap for more steps...
Step 2.4.2.5.1.2.1
Multiply by .
Step 2.4.2.5.1.2.2
Multiply by .
Step 2.4.2.5.1.3
Subtract from .
Step 2.4.2.5.1.4
Rewrite as .
Step 2.4.2.5.1.5
Rewrite as .
Step 2.4.2.5.1.6
Rewrite as .
Step 2.4.2.5.1.7
Rewrite as .
Step 2.4.2.5.1.8
Pull terms out from under the radical, assuming positive real numbers.
Step 2.4.2.5.1.9
Move to the left of .
Step 2.4.2.5.2
Multiply by .
Step 2.4.2.5.3
Simplify .
Step 2.4.2.5.4
Change the to .
Step 2.4.2.6
The final answer is the combination of both solutions.
Step 2.5
The final solution is all the values that make true. The multiplicity of a root is the number of times the root appears.
(Multiplicity of )
(Multiplicity of )
(Multiplicity of )
(Multiplicity of )
(Multiplicity of )
(Multiplicity of )
Step 3