Enter a problem...
Precalculus Examples
Step 1
Interchange the variables.
Step 2
Step 2.1
Rewrite the equation as .
Step 2.2
Raise each side of the equation to the power of to eliminate the fractional exponent on the left side.
Step 2.3
Simplify the left side.
Step 2.3.1
Simplify .
Step 2.3.1.1
Multiply the exponents in .
Step 2.3.1.1.1
Apply the power rule and multiply exponents, .
Step 2.3.1.1.2
Cancel the common factor of .
Step 2.3.1.1.2.1
Cancel the common factor.
Step 2.3.1.1.2.2
Rewrite the expression.
Step 2.3.1.2
Simplify.
Step 2.4
Subtract from both sides of the equation.
Step 3
Replace with to show the final answer.
Step 4
Step 4.1
To verify the inverse, check if and .
Step 4.2
Evaluate .
Step 4.2.1
Set up the composite result function.
Step 4.2.2
Evaluate by substituting in the value of into .
Step 4.2.3
Simplify each term.
Step 4.2.3.1
Multiply the exponents in .
Step 4.2.3.1.1
Apply the power rule and multiply exponents, .
Step 4.2.3.1.2
Cancel the common factor of .
Step 4.2.3.1.2.1
Cancel the common factor.
Step 4.2.3.1.2.2
Rewrite the expression.
Step 4.2.3.2
Simplify.
Step 4.2.4
Combine the opposite terms in .
Step 4.2.4.1
Subtract from .
Step 4.2.4.2
Add and .
Step 4.3
Evaluate .
Step 4.3.1
Set up the composite result function.
Step 4.3.2
Evaluate by substituting in the value of into .
Step 4.3.3
Combine the opposite terms in .
Step 4.3.3.1
Add and .
Step 4.3.3.2
Add and .
Step 4.3.4
Multiply the exponents in .
Step 4.3.4.1
Apply the power rule and multiply exponents, .
Step 4.3.4.2
Cancel the common factor of .
Step 4.3.4.2.1
Cancel the common factor.
Step 4.3.4.2.2
Rewrite the expression.
Step 4.4
Since and , then is the inverse of .