Precalculus Examples

Verify the Identity sec(x)^2(1-sin(x)^2)=1
sec2(x)(1-sin2(x))=1
Step 1
Start on the left side.
sec2(x)(1-sin2(x))
Step 2
Apply pythagorean identity.
sec2(x)cos2(x)
Step 3
Convert to sines and cosines.
Tap for more steps...
Step 3.1
Apply the reciprocal identity to sec(x).
(1cos(x))2cos2(x)
Step 3.2
Apply the product rule to 1cos(x).
12cos2(x)cos2(x)
12cos2(x)cos2(x)
Step 4
Simplify.
Tap for more steps...
Step 4.1
One to any power is one.
1cos(x)2cos(x)2
Step 4.2
Cancel the common factor of cos(x)2.
Tap for more steps...
Step 4.2.1
Cancel the common factor.
1cos(x)2cos(x)2
Step 4.2.2
Rewrite the expression.
1
1
1
Step 5
Because the two sides have been shown to be equivalent, the equation is an identity.
sec2(x)(1-sin2(x))=1 is an identity
sec2x(1-sin2x)=1
(
(
)
)
|
|
[
[
]
]
7
7
8
8
9
9
°
°
θ
θ
4
4
5
5
6
6
/
/
^
^
×
×
>
>
π
π
1
1
2
2
3
3
-
-
+
+
÷
÷
<
<
,
,
0
0
.
.
%
%
=
=
 [x2  12  π  xdx ]