Precalculus Examples

Split Using Partial Fraction Decomposition (-10x^2+27x-14)/((x-1)^3(x+2))
Step 1
Decompose the fraction and multiply through by the common denominator.
Tap for more steps...
Step 1.1
Factor by grouping.
Tap for more steps...
Step 1.1.1
For a polynomial of the form , rewrite the middle term as a sum of two terms whose product is and whose sum is .
Tap for more steps...
Step 1.1.1.1
Factor out of .
Step 1.1.1.2
Rewrite as plus
Step 1.1.1.3
Apply the distributive property.
Step 1.1.2
Factor out the greatest common factor from each group.
Tap for more steps...
Step 1.1.2.1
Group the first two terms and the last two terms.
Step 1.1.2.2
Factor out the greatest common factor (GCF) from each group.
Step 1.1.3
Factor the polynomial by factoring out the greatest common factor, .
Step 1.2
For each factor in the denominator, create a new fraction using the factor as the denominator, and an unknown value as the numerator. Since the factor in the denominator is linear, put a single variable in its place .
Step 1.3
For each factor in the denominator, create a new fraction using the factor as the denominator, and an unknown value as the numerator. Since the factor in the denominator is linear, put a single variable in its place .
Step 1.4
For each factor in the denominator, create a new fraction using the factor as the denominator, and an unknown value as the numerator. Since the factor in the denominator is linear, put a single variable in its place .
Step 1.5
For each factor in the denominator, create a new fraction using the factor as the denominator, and an unknown value as the numerator. Since the factor in the denominator is linear, put a single variable in its place .
Step 1.6
Multiply each fraction in the equation by the denominator of the original expression. In this case, the denominator is .
Step 1.7
Reduce the expression by cancelling the common factors.
Tap for more steps...
Step 1.7.1
Cancel the common factor of .
Tap for more steps...
Step 1.7.1.1
Cancel the common factor.
Step 1.7.1.2
Rewrite the expression.
Step 1.7.2
Cancel the common factor of .
Tap for more steps...
Step 1.7.2.1
Cancel the common factor.
Step 1.7.2.2
Divide by .
Step 1.8
Expand using the FOIL Method.
Tap for more steps...
Step 1.8.1
Apply the distributive property.
Step 1.8.2
Apply the distributive property.
Step 1.8.3
Apply the distributive property.
Step 1.9
Simplify and combine like terms.
Tap for more steps...
Step 1.9.1
Simplify each term.
Tap for more steps...
Step 1.9.1.1
Multiply by by adding the exponents.
Tap for more steps...
Step 1.9.1.1.1
Move .
Step 1.9.1.1.2
Multiply by .
Step 1.9.1.2
Multiply by .
Step 1.9.1.3
Multiply by .
Step 1.9.2
Add and .
Step 1.10
Simplify each term.
Tap for more steps...
Step 1.10.1
Cancel the common factor of .
Tap for more steps...
Step 1.10.1.1
Cancel the common factor.
Step 1.10.1.2
Divide by .
Step 1.10.2
Apply the distributive property.
Step 1.10.3
Move to the left of .
Step 1.10.4
Cancel the common factor of and .
Tap for more steps...
Step 1.10.4.1
Factor out of .
Step 1.10.4.2
Cancel the common factors.
Tap for more steps...
Step 1.10.4.2.1
Multiply by .
Step 1.10.4.2.2
Cancel the common factor.
Step 1.10.4.2.3
Rewrite the expression.
Step 1.10.4.2.4
Divide by .
Step 1.10.5
Apply the distributive property.
Step 1.10.6
Move to the left of .
Step 1.10.7
Rewrite as .
Step 1.10.8
Expand using the FOIL Method.
Tap for more steps...
Step 1.10.8.1
Apply the distributive property.
Step 1.10.8.2
Apply the distributive property.
Step 1.10.8.3
Apply the distributive property.
Step 1.10.9
Simplify and combine like terms.
Tap for more steps...
Step 1.10.9.1
Simplify each term.
Tap for more steps...
Step 1.10.9.1.1
Multiply by by adding the exponents.
Tap for more steps...
Step 1.10.9.1.1.1
Move .
Step 1.10.9.1.1.2
Multiply by .
Step 1.10.9.1.2
Move to the left of .
Step 1.10.9.1.3
Multiply by .
Step 1.10.9.2
Subtract from .
Step 1.10.10
Multiply by .
Step 1.10.11
Cancel the common factor of and .
Tap for more steps...
Step 1.10.11.1
Factor out of .
Step 1.10.11.2
Cancel the common factors.
Tap for more steps...
Step 1.10.11.2.1
Multiply by .
Step 1.10.11.2.2
Cancel the common factor.
Step 1.10.11.2.3
Rewrite the expression.
Step 1.10.11.2.4
Divide by .
Step 1.10.12
Rewrite as .
Step 1.10.13
Expand using the FOIL Method.
Tap for more steps...
Step 1.10.13.1
Apply the distributive property.
Step 1.10.13.2
Apply the distributive property.
Step 1.10.13.3
Apply the distributive property.
Step 1.10.14
Simplify and combine like terms.
Tap for more steps...
Step 1.10.14.1
Simplify each term.
Tap for more steps...
Step 1.10.14.1.1
Multiply by .
Step 1.10.14.1.2
Move to the left of .
Step 1.10.14.1.3
Rewrite as .
Step 1.10.14.1.4
Rewrite as .
Step 1.10.14.1.5
Multiply by .
Step 1.10.14.2
Subtract from .
Step 1.10.15
Apply the distributive property.
Step 1.10.16
Simplify.
Tap for more steps...
Step 1.10.16.1
Rewrite using the commutative property of multiplication.
Step 1.10.16.2
Multiply by .
Step 1.10.17
Expand by multiplying each term in the first expression by each term in the second expression.
Step 1.10.18
Simplify each term.
Tap for more steps...
Step 1.10.18.1
Multiply by by adding the exponents.
Tap for more steps...
Step 1.10.18.1.1
Move .
Step 1.10.18.1.2
Multiply by .
Tap for more steps...
Step 1.10.18.1.2.1
Raise to the power of .
Step 1.10.18.1.2.2
Use the power rule to combine exponents.
Step 1.10.18.1.3
Add and .
Step 1.10.18.2
Move to the left of .
Step 1.10.18.3
Multiply by by adding the exponents.
Tap for more steps...
Step 1.10.18.3.1
Move .
Step 1.10.18.3.2
Multiply by .
Step 1.10.18.4
Multiply by .
Step 1.10.18.5
Move to the left of .
Step 1.10.19
Combine the opposite terms in .
Tap for more steps...
Step 1.10.19.1
Subtract from .
Step 1.10.19.2
Add and .
Step 1.10.20
Add and .
Step 1.10.21
Cancel the common factor of .
Tap for more steps...
Step 1.10.21.1
Cancel the common factor.
Step 1.10.21.2
Divide by .
Step 1.10.22
Use the Binomial Theorem.
Step 1.10.23
Simplify each term.
Tap for more steps...
Step 1.10.23.1
Multiply by .
Step 1.10.23.2
Raise to the power of .
Step 1.10.23.3
Multiply by .
Step 1.10.23.4
Raise to the power of .
Step 1.10.24
Apply the distributive property.
Step 1.10.25
Simplify.
Tap for more steps...
Step 1.10.25.1
Rewrite using the commutative property of multiplication.
Step 1.10.25.2
Rewrite using the commutative property of multiplication.
Step 1.10.25.3
Move to the left of .
Step 1.10.26
Rewrite as .
Step 1.11
Simplify the expression.
Tap for more steps...
Step 1.11.1
Reorder and .
Step 1.11.2
Move .
Step 1.11.3
Move .
Step 1.11.4
Move .
Step 1.11.5
Move .
Step 1.11.6
Move .
Step 1.11.7
Move .
Step 1.11.8
Move .
Step 2
Create equations for the partial fraction variables and use them to set up a system of equations.
Tap for more steps...
Step 2.1
Create an equation for the partial fraction variables by equating the coefficients of from each side of the equation. For the equation to be equal, the equivalent coefficients on each side of the equation must be equal.
Step 2.2
Create an equation for the partial fraction variables by equating the coefficients of from each side of the equation. For the equation to be equal, the equivalent coefficients on each side of the equation must be equal.
Step 2.3
Create an equation for the partial fraction variables by equating the coefficients of from each side of the equation. For the equation to be equal, the equivalent coefficients on each side of the equation must be equal.
Step 2.4
Create an equation for the partial fraction variables by equating the coefficients of the terms not containing . For the equation to be equal, the equivalent coefficients on each side of the equation must be equal.
Step 2.5
Set up the system of equations to find the coefficients of the partial fractions.
Step 3
Solve the system of equations.
Tap for more steps...
Step 3.1
Solve for in .
Tap for more steps...
Step 3.1.1
Rewrite the equation as .
Step 3.1.2
Subtract from both sides of the equation.
Step 3.2
Replace all occurrences of with in each equation.
Tap for more steps...
Step 3.2.1
Replace all occurrences of in with .
Step 3.2.2
Simplify the right side.
Tap for more steps...
Step 3.2.2.1
Simplify .
Tap for more steps...
Step 3.2.2.1.1
Multiply by .
Step 3.2.2.1.2
Add and .
Step 3.2.3
Replace all occurrences of in with .
Step 3.2.4
Simplify the right side.
Tap for more steps...
Step 3.2.4.1
Simplify .
Tap for more steps...
Step 3.2.4.1.1
Simplify each term.
Tap for more steps...
Step 3.2.4.1.1.1
Multiply by .
Step 3.2.4.1.1.2
Rewrite as .
Step 3.2.4.1.2
Subtract from .
Step 3.3
Solve for in .
Tap for more steps...
Step 3.3.1
Rewrite the equation as .
Step 3.3.2
Move all terms not containing to the right side of the equation.
Tap for more steps...
Step 3.3.2.1
Subtract from both sides of the equation.
Step 3.3.2.2
Subtract from both sides of the equation.
Step 3.4
Replace all occurrences of with in each equation.
Tap for more steps...
Step 3.4.1
Replace all occurrences of in with .
Step 3.4.2
Simplify the right side.
Tap for more steps...
Step 3.4.2.1
Simplify .
Tap for more steps...
Step 3.4.2.1.1
Simplify each term.
Tap for more steps...
Step 3.4.2.1.1.1
Apply the distributive property.
Step 3.4.2.1.1.2
Simplify.
Tap for more steps...
Step 3.4.2.1.1.2.1
Multiply by .
Step 3.4.2.1.1.2.2
Multiply by .
Step 3.4.2.1.1.2.3
Multiply by .
Step 3.4.2.1.2
Simplify by adding terms.
Tap for more steps...
Step 3.4.2.1.2.1
Subtract from .
Step 3.4.2.1.2.2
Subtract from .
Step 3.5
Solve for in .
Tap for more steps...
Step 3.5.1
Rewrite the equation as .
Step 3.5.2
Add to both sides of the equation.
Step 3.6
Replace all occurrences of with in each equation.
Tap for more steps...
Step 3.6.1
Replace all occurrences of in with .
Step 3.6.2
Simplify the right side.
Tap for more steps...
Step 3.6.2.1
Simplify .
Tap for more steps...
Step 3.6.2.1.1
Simplify each term.
Tap for more steps...
Step 3.6.2.1.1.1
Apply the distributive property.
Step 3.6.2.1.1.2
Multiply by .
Step 3.6.2.1.1.3
Multiply by .
Step 3.6.2.1.2
Simplify by adding terms.
Tap for more steps...
Step 3.6.2.1.2.1
Add and .
Step 3.6.2.1.2.2
Subtract from .
Step 3.6.3
Replace all occurrences of in with .
Step 3.6.4
Simplify the right side.
Tap for more steps...
Step 3.6.4.1
Simplify .
Tap for more steps...
Step 3.6.4.1.1
Simplify each term.
Tap for more steps...
Step 3.6.4.1.1.1
Apply the distributive property.
Step 3.6.4.1.1.2
Multiply by .
Step 3.6.4.1.1.3
Multiply by .
Step 3.6.4.1.2
Simplify by adding terms.
Tap for more steps...
Step 3.6.4.1.2.1
Add and .
Step 3.6.4.1.2.2
Subtract from .
Step 3.7
Solve for in .
Tap for more steps...
Step 3.7.1
Rewrite the equation as .
Step 3.7.2
Move all terms not containing to the right side of the equation.
Tap for more steps...
Step 3.7.2.1
Subtract from both sides of the equation.
Step 3.7.2.2
Subtract from .
Step 3.7.3
Divide each term in by and simplify.
Tap for more steps...
Step 3.7.3.1
Divide each term in by .
Step 3.7.3.2
Simplify the left side.
Tap for more steps...
Step 3.7.3.2.1
Cancel the common factor of .
Tap for more steps...
Step 3.7.3.2.1.1
Cancel the common factor.
Step 3.7.3.2.1.2
Divide by .
Step 3.7.3.3
Simplify the right side.
Tap for more steps...
Step 3.7.3.3.1
Divide by .
Step 3.8
Replace all occurrences of with in each equation.
Tap for more steps...
Step 3.8.1
Replace all occurrences of in with .
Step 3.8.2
Simplify the right side.
Tap for more steps...
Step 3.8.2.1
Simplify .
Tap for more steps...
Step 3.8.2.1.1
Multiply by .
Step 3.8.2.1.2
Subtract from .
Step 3.8.3
Replace all occurrences of in with .
Step 3.8.4
Simplify the right side.
Tap for more steps...
Step 3.8.4.1
Simplify .
Tap for more steps...
Step 3.8.4.1.1
Multiply by .
Step 3.8.4.1.2
Add and .
Step 3.8.5
Replace all occurrences of in with .
Step 3.8.6
Simplify the right side.
Tap for more steps...
Step 3.8.6.1
Multiply by .
Step 3.9
List all of the solutions.
Step 4
Replace each of the partial fraction coefficients in with the values found for , , , and .