Enter a problem...
Precalculus Examples
f(x)=2x37f(x)=2x37
Step 1
Step 1.1
Find f(-x)f(−x) by substituting -x−x for all occurrence of xx in f(x)f(x).
f(-x)=2(-x)37f(−x)=2(−x)37
Step 1.2
Simplify the expression.
Step 1.2.1
Apply the product rule to -x−x.
f(-x)=2((-1)37x37)f(−x)=2((−1)37x37)
Step 1.2.2
Rewrite -1−1 as (-1)7(−1)7.
f(-x)=2(((-1)7)37x37)f(−x)=2(((−1)7)37x37)
Step 1.2.3
Apply the power rule and multiply exponents, (am)n=amn(am)n=amn.
f(-x)=2((-1)7(37)x37)f(−x)=2((−1)7(37)x37)
f(-x)=2((-1)7(37)x37)f(−x)=2((−1)7(37)x37)
Step 1.3
Cancel the common factor of 77.
Step 1.3.1
Cancel the common factor.
f(-x)=2((-1)7(37)x37)
Step 1.3.2
Rewrite the expression.
f(-x)=2((-1)3x37)
f(-x)=2((-1)3x37)
Step 1.4
Simplify the expression.
Step 1.4.1
Raise -1 to the power of 3.
f(-x)=2(-x37)
Step 1.4.2
Multiply -1 by 2.
f(-x)=-2x37
f(-x)=-2x37
f(-x)=-2x37
Step 2
Step 2.1
Check if f(-x)=f(x).
Step 2.2
Since -2x37≠2x37, the function is not even.
The function is not even
The function is not even
Step 3
Step 3.1
Multiply 2 by -1.
-f(x)=-2x37
Step 3.2
Since -2x37=-2x37, the function is odd.
The function is odd
The function is odd
Step 4
