Precalculus Examples

Determine if Odd, Even, or Neither f(x)=2x^(3/7)
f(x)=2x37f(x)=2x37
Step 1
Find f(-x)f(x).
Tap for more steps...
Step 1.1
Find f(-x)f(x) by substituting -xx for all occurrence of xx in f(x)f(x).
f(-x)=2(-x)37f(x)=2(x)37
Step 1.2
Simplify the expression.
Tap for more steps...
Step 1.2.1
Apply the product rule to -xx.
f(-x)=2((-1)37x37)f(x)=2((1)37x37)
Step 1.2.2
Rewrite -11 as (-1)7(1)7.
f(-x)=2(((-1)7)37x37)f(x)=2(((1)7)37x37)
Step 1.2.3
Apply the power rule and multiply exponents, (am)n=amn(am)n=amn.
f(-x)=2((-1)7(37)x37)f(x)=2((1)7(37)x37)
f(-x)=2((-1)7(37)x37)f(x)=2((1)7(37)x37)
Step 1.3
Cancel the common factor of 77.
Tap for more steps...
Step 1.3.1
Cancel the common factor.
f(-x)=2((-1)7(37)x37)
Step 1.3.2
Rewrite the expression.
f(-x)=2((-1)3x37)
f(-x)=2((-1)3x37)
Step 1.4
Simplify the expression.
Tap for more steps...
Step 1.4.1
Raise -1 to the power of 3.
f(-x)=2(-x37)
Step 1.4.2
Multiply -1 by 2.
f(-x)=-2x37
f(-x)=-2x37
f(-x)=-2x37
Step 2
A function is even if f(-x)=f(x).
Tap for more steps...
Step 2.1
Check if f(-x)=f(x).
Step 2.2
Since -2x372x37, the function is not even.
The function is not even
The function is not even
Step 3
A function is odd if f(-x)=-f(x).
Tap for more steps...
Step 3.1
Multiply 2 by -1.
-f(x)=-2x37
Step 3.2
Since -2x37=-2x37, the function is odd.
The function is odd
The function is odd
Step 4
image of graph
(
(
)
)
|
|
[
[
]
]
7
7
8
8
9
9
°
°
θ
θ
4
4
5
5
6
6
/
/
^
^
×
×
>
>
π
π
1
1
2
2
3
3
-
-
+
+
÷
÷
<
<
,
,
0
0
.
.
%
%
=
=
 [x2  12  π  xdx ]