Enter a problem...
Precalculus Examples
Step 1
Find where the expression is undefined.
Step 2
Since as from the left and as from the right, then is a vertical asymptote.
Step 3
Since as from the left and as from the right, then is a vertical asymptote.
Step 4
List all of the vertical asymptotes:
Step 5
Consider the rational function where is the degree of the numerator and is the degree of the denominator.
1. If , then the x-axis, , is the horizontal asymptote.
2. If , then the horizontal asymptote is the line .
3. If , then there is no horizontal asymptote (there is an oblique asymptote).
Step 6
Find and .
Step 7
Since , there is no horizontal asymptote.
No Horizontal Asymptotes
Step 8
Step 8.1
Set up the polynomials to be divided. If there is not a term for every exponent, insert one with a value of .
+ | - | + | - | + | + | - |
Step 8.2
Divide the highest order term in the dividend by the highest order term in divisor .
+ | - | + | - | + | + | - |
Step 8.3
Multiply the new quotient term by the divisor.
+ | - | + | - | + | + | - | |||||||||||
+ | + | - |
Step 8.4
The expression needs to be subtracted from the dividend, so change all the signs in
+ | - | + | - | + | + | - | |||||||||||
- | - | + |
Step 8.5
After changing the signs, add the last dividend from the multiplied polynomial to find the new dividend.
+ | - | + | - | + | + | - | |||||||||||
- | - | + | |||||||||||||||
+ |
Step 8.6
Pull the next term from the original dividend down into the current dividend.
+ | - | + | - | + | + | - | |||||||||||
- | - | + | |||||||||||||||
+ | + | + |
Step 8.7
Divide the highest order term in the dividend by the highest order term in divisor .
+ | + | ||||||||||||||||
+ | - | + | - | + | + | - | |||||||||||
- | - | + | |||||||||||||||
+ | + | + |
Step 8.8
Multiply the new quotient term by the divisor.
+ | + | ||||||||||||||||
+ | - | + | - | + | + | - | |||||||||||
- | - | + | |||||||||||||||
+ | + | + | |||||||||||||||
+ | + | - |
Step 8.9
The expression needs to be subtracted from the dividend, so change all the signs in
+ | + | ||||||||||||||||
+ | - | + | - | + | + | - | |||||||||||
- | - | + | |||||||||||||||
+ | + | + | |||||||||||||||
- | - | + |
Step 8.10
After changing the signs, add the last dividend from the multiplied polynomial to find the new dividend.
+ | + | ||||||||||||||||
+ | - | + | - | + | + | - | |||||||||||
- | - | + | |||||||||||||||
+ | + | + | |||||||||||||||
- | - | + | |||||||||||||||
+ |
Step 8.11
Pull the next term from the original dividend down into the current dividend.
+ | + | ||||||||||||||||
+ | - | + | - | + | + | - | |||||||||||
- | - | + | |||||||||||||||
+ | + | + | |||||||||||||||
- | - | + | |||||||||||||||
+ | - |
Step 8.12
The final answer is the quotient plus the remainder over the divisor.
Step 8.13
The oblique asymptote is the polynomial portion of the long division result.
Step 9
This is the set of all asymptotes.
Vertical Asymptotes:
No Horizontal Asymptotes
Oblique Asymptotes:
Step 10