Precalculus Examples

Convert to Interval Notation (x^2(4+x)(x-9))/((x+2)(x-7))>=0
Step 1
Find all the values where the expression switches from negative to positive by setting each factor equal to and solving.
Step 2
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Step 3
Simplify .
Tap for more steps...
Step 3.1
Rewrite as .
Step 3.2
Pull terms out from under the radical, assuming positive real numbers.
Step 3.3
Plus or minus is .
Step 4
Subtract from both sides of the equation.
Step 5
Add to both sides of the equation.
Step 6
Subtract from both sides of the equation.
Step 7
Add to both sides of the equation.
Step 8
Solve for each factor to find the values where the absolute value expression goes from negative to positive.
Step 9
Consolidate the solutions.
Step 10
Find the domain of .
Tap for more steps...
Step 10.1
Set the denominator in equal to to find where the expression is undefined.
Step 10.2
Solve for .
Tap for more steps...
Step 10.2.1
If any individual factor on the left side of the equation is equal to , the entire expression will be equal to .
Step 10.2.2
Set equal to and solve for .
Tap for more steps...
Step 10.2.2.1
Set equal to .
Step 10.2.2.2
Subtract from both sides of the equation.
Step 10.2.3
Set equal to and solve for .
Tap for more steps...
Step 10.2.3.1
Set equal to .
Step 10.2.3.2
Add to both sides of the equation.
Step 10.2.4
The final solution is all the values that make true.
Step 10.3
The domain is all values of that make the expression defined.
Step 11
Use each root to create test intervals.
Step 12
Choose a test value from each interval and plug this value into the original inequality to determine which intervals satisfy the inequality.
Tap for more steps...
Step 12.1
Test a value on the interval to see if it makes the inequality true.
Tap for more steps...
Step 12.1.1
Choose a value on the interval and see if this value makes the original inequality true.
Step 12.1.2
Replace with in the original inequality.
Step 12.1.3
The left side is greater than the right side , which means that the given statement is always true.
True
True
Step 12.2
Test a value on the interval to see if it makes the inequality true.
Tap for more steps...
Step 12.2.1
Choose a value on the interval and see if this value makes the original inequality true.
Step 12.2.2
Replace with in the original inequality.
Step 12.2.3
The left side is less than the right side , which means that the given statement is false.
False
False
Step 12.3
Test a value on the interval to see if it makes the inequality true.
Tap for more steps...
Step 12.3.1
Choose a value on the interval and see if this value makes the original inequality true.
Step 12.3.2
Replace with in the original inequality.
Step 12.3.3
The left side is greater than the right side , which means that the given statement is always true.
True
True
Step 12.4
Test a value on the interval to see if it makes the inequality true.
Tap for more steps...
Step 12.4.1
Choose a value on the interval and see if this value makes the original inequality true.
Step 12.4.2
Replace with in the original inequality.
Step 12.4.3
The left side is greater than the right side , which means that the given statement is always true.
True
True
Step 12.5
Test a value on the interval to see if it makes the inequality true.
Tap for more steps...
Step 12.5.1
Choose a value on the interval and see if this value makes the original inequality true.
Step 12.5.2
Replace with in the original inequality.
Step 12.5.3
The left side is less than the right side , which means that the given statement is false.
False
False
Step 12.6
Test a value on the interval to see if it makes the inequality true.
Tap for more steps...
Step 12.6.1
Choose a value on the interval and see if this value makes the original inequality true.
Step 12.6.2
Replace with in the original inequality.
Step 12.6.3
The left side is greater than the right side , which means that the given statement is always true.
True
True
Step 12.7
Compare the intervals to determine which ones satisfy the original inequality.
True
False
True
True
False
True
True
False
True
True
False
True
Step 13
The solution consists of all of the true intervals.
or or or
Step 14
Combine the intervals.
Step 15
Convert the inequality to interval notation.
Step 16