Enter a problem...
Precalculus Examples
(5,π2)(5,π2)
Step 1
Convert from rectangular coordinates (x,y)(x,y) to polar coordinates (r,θ)(r,θ) using the conversion formulas.
r=√x2+y2r=√x2+y2
θ=tan-1(yx)θ=tan−1(yx)
Step 2
Replace xx and yy with the actual values.
r=√(5)2+(π2)2r=√(5)2+(π2)2
θ=tan-1(yx)θ=tan−1(yx)
Step 3
Step 3.1
Raise 55 to the power of 22.
r=√25+(π2)2r=√25+(π2)2
θ=tan-1(yx)θ=tan−1(yx)
Step 3.2
Apply the product rule to π2π2.
r=√25+π222r=√25+π222
θ=tan-1(yx)θ=tan−1(yx)
Step 3.3
Raise 22 to the power of 22.
r=√25+π24r=√25+π24
θ=tan-1(yx)θ=tan−1(yx)
Step 3.4
To write 2525 as a fraction with a common denominator, multiply by 4444.
r=√25⋅44+π24r=√25⋅44+π24
θ=tan-1(yx)θ=tan−1(yx)
Step 3.5
Combine 2525 and 4444.
r=√25⋅44+π24r=√25⋅44+π24
θ=tan-1(yx)θ=tan−1(yx)
Step 3.6
Simplify the expression.
Step 3.6.1
Combine the numerators over the common denominator.
r=√25⋅4+π24r=√25⋅4+π24
θ=tan-1(yx)θ=tan−1(yx)
Step 3.6.2
Multiply 2525 by 44.
r=√100+π24r=√100+π24
θ=tan-1(yx)θ=tan−1(yx)
r=√100+π24r=√100+π24
θ=tan-1(yx)θ=tan−1(yx)
Step 3.7
Rewrite √100+π24√100+π24 as √100+π2√4√100+π2√4.
r=√100+π2√4r=√100+π2√4
θ=tan-1(yx)θ=tan−1(yx)
Step 3.8
Simplify the denominator.
Step 3.8.1
Rewrite 44 as 2222.
r=√100+π2√22r=√100+π2√22
θ=tan-1(yx)θ=tan−1(yx)
Step 3.8.2
Pull terms out from under the radical, assuming positive real numbers.
r=√100+π22r=√100+π22
θ=tan-1(yx)θ=tan−1(yx)
r=√100+π22r=√100+π22
θ=tan-1(yx)θ=tan−1(yx)
r=√100+π22r=√100+π22
θ=tan-1(yx)θ=tan−1(yx)
Step 4
Replace xx and yy with the actual values.
r=√100+π22r=√100+π22
θ=tan-1(π25)θ=tan−1(π25)
Step 5
The inverse tangent of π10π10 is θ=17.44059449°θ=17.44059449°.
r=√100+π22r=√100+π22
θ=17.44059449°
Step 6
This is the result of the conversion to polar coordinates in (r,θ) form.
(√100+π22,17.44059449°)