Enter a problem...
Precalculus Examples
Step 1
Convert from rectangular coordinates to polar coordinates using the conversion formulas.
Step 2
Replace and with the actual values.
Step 3
Step 3.1
Apply the product rule to .
Step 3.2
Raise to the power of .
Step 3.3
Raise to the power of .
Step 3.4
Use the power rule to distribute the exponent.
Step 3.4.1
Apply the product rule to .
Step 3.4.2
Apply the product rule to .
Step 3.5
Simplify the numerator.
Step 3.5.1
Raise to the power of .
Step 3.5.2
Rewrite as .
Step 3.5.2.1
Use to rewrite as .
Step 3.5.2.2
Apply the power rule and multiply exponents, .
Step 3.5.2.3
Combine and .
Step 3.5.2.4
Cancel the common factor of .
Step 3.5.2.4.1
Cancel the common factor.
Step 3.5.2.4.2
Rewrite the expression.
Step 3.5.2.5
Evaluate the exponent.
Step 3.6
Simplify the expression.
Step 3.6.1
Raise to the power of .
Step 3.6.2
Multiply by .
Step 3.6.3
Combine the numerators over the common denominator.
Step 3.6.4
Add and .
Step 3.6.5
Divide by .
Step 3.6.6
Rewrite as .
Step 3.7
Pull terms out from under the radical, assuming positive real numbers.
Step 4
Replace and with the actual values.
Step 5
The inverse tangent of is .
Step 6
This is the result of the conversion to polar coordinates in form.