Enter a problem...
Precalculus Examples
Step 1
Step 1.1
Isolate to the left side of the equation.
Step 1.1.1
Rewrite the equation as .
Step 1.1.2
Divide each term in by and simplify.
Step 1.1.2.1
Divide each term in by .
Step 1.1.2.2
Simplify the left side.
Step 1.1.2.2.1
Cancel the common factor of .
Step 1.1.2.2.1.1
Cancel the common factor.
Step 1.1.2.2.1.2
Divide by .
Step 1.1.2.3
Simplify the right side.
Step 1.1.2.3.1
Move the negative in front of the fraction.
Step 1.1.3
Subtract from both sides of the equation.
Step 1.1.4
Reorder terms.
Step 1.2
Complete the square for .
Step 1.2.1
Simplify the expression.
Step 1.2.1.1
Simplify each term.
Step 1.2.1.1.1
Rewrite as .
Step 1.2.1.1.2
Expand using the FOIL Method.
Step 1.2.1.1.2.1
Apply the distributive property.
Step 1.2.1.1.2.2
Apply the distributive property.
Step 1.2.1.1.2.3
Apply the distributive property.
Step 1.2.1.1.3
Simplify and combine like terms.
Step 1.2.1.1.3.1
Simplify each term.
Step 1.2.1.1.3.1.1
Multiply by .
Step 1.2.1.1.3.1.2
Move to the left of .
Step 1.2.1.1.3.1.3
Multiply by .
Step 1.2.1.1.3.2
Add and .
Step 1.2.1.1.4
Apply the distributive property.
Step 1.2.1.1.5
Simplify.
Step 1.2.1.1.5.1
Combine and .
Step 1.2.1.1.5.2
Cancel the common factor of .
Step 1.2.1.1.5.2.1
Move the leading negative in into the numerator.
Step 1.2.1.1.5.2.2
Factor out of .
Step 1.2.1.1.5.2.3
Factor out of .
Step 1.2.1.1.5.2.4
Cancel the common factor.
Step 1.2.1.1.5.2.5
Rewrite the expression.
Step 1.2.1.1.5.3
Combine and .
Step 1.2.1.1.5.4
Multiply by .
Step 1.2.1.1.5.5
Combine and .
Step 1.2.1.1.5.6
Cancel the common factor of .
Step 1.2.1.1.5.6.1
Move the leading negative in into the numerator.
Step 1.2.1.1.5.6.2
Factor out of .
Step 1.2.1.1.5.6.3
Factor out of .
Step 1.2.1.1.5.6.4
Cancel the common factor.
Step 1.2.1.1.5.6.5
Rewrite the expression.
Step 1.2.1.1.5.7
Combine and .
Step 1.2.1.1.5.8
Multiply by .
Step 1.2.1.1.6
Simplify each term.
Step 1.2.1.1.6.1
Move the negative in front of the fraction.
Step 1.2.1.1.6.2
Move the negative in front of the fraction.
Step 1.2.1.2
To write as a fraction with a common denominator, multiply by .
Step 1.2.1.3
Combine and .
Step 1.2.1.4
Combine the numerators over the common denominator.
Step 1.2.1.5
Simplify the numerator.
Step 1.2.1.5.1
Multiply by .
Step 1.2.1.5.2
Subtract from .
Step 1.2.1.6
Move the negative in front of the fraction.
Step 1.2.2
Use the form , to find the values of , , and .
Step 1.2.3
Consider the vertex form of a parabola.
Step 1.2.4
Find the value of using the formula .
Step 1.2.4.1
Substitute the values of and into the formula .
Step 1.2.4.2
Simplify the right side.
Step 1.2.4.2.1
Dividing two negative values results in a positive value.
Step 1.2.4.2.2
Multiply the numerator by the reciprocal of the denominator.
Step 1.2.4.2.3
Cancel the common factor of .
Step 1.2.4.2.3.1
Cancel the common factor.
Step 1.2.4.2.3.2
Rewrite the expression.
Step 1.2.4.2.4
Multiply by .
Step 1.2.4.2.5
Combine and .
Step 1.2.4.2.6
Cancel the common factor of and .
Step 1.2.4.2.6.1
Factor out of .
Step 1.2.4.2.6.2
Cancel the common factors.
Step 1.2.4.2.6.2.1
Factor out of .
Step 1.2.4.2.6.2.2
Cancel the common factor.
Step 1.2.4.2.6.2.3
Rewrite the expression.
Step 1.2.4.2.7
Multiply the numerator by the reciprocal of the denominator.
Step 1.2.4.2.8
Multiply by .
Step 1.2.5
Find the value of using the formula .
Step 1.2.5.1
Substitute the values of , and into the formula .
Step 1.2.5.2
Simplify the right side.
Step 1.2.5.2.1
Simplify each term.
Step 1.2.5.2.1.1
Simplify the numerator.
Step 1.2.5.2.1.1.1
Apply the product rule to .
Step 1.2.5.2.1.1.2
Raise to the power of .
Step 1.2.5.2.1.1.3
Apply the product rule to .
Step 1.2.5.2.1.1.4
Raise to the power of .
Step 1.2.5.2.1.1.5
Raise to the power of .
Step 1.2.5.2.1.1.6
Multiply by .
Step 1.2.5.2.1.2
Simplify the denominator.
Step 1.2.5.2.1.2.1
Multiply by .
Step 1.2.5.2.1.2.2
Combine and .
Step 1.2.5.2.1.3
Reduce the expression by cancelling the common factors.
Step 1.2.5.2.1.3.1
Cancel the common factor of and .
Step 1.2.5.2.1.3.1.1
Factor out of .
Step 1.2.5.2.1.3.1.2
Cancel the common factors.
Step 1.2.5.2.1.3.1.2.1
Factor out of .
Step 1.2.5.2.1.3.1.2.2
Cancel the common factor.
Step 1.2.5.2.1.3.1.2.3
Rewrite the expression.
Step 1.2.5.2.1.3.2
Move the negative in front of the fraction.
Step 1.2.5.2.1.4
Multiply the numerator by the reciprocal of the denominator.
Step 1.2.5.2.1.5
Cancel the common factor of .
Step 1.2.5.2.1.5.1
Factor out of .
Step 1.2.5.2.1.5.2
Factor out of .
Step 1.2.5.2.1.5.3
Cancel the common factor.
Step 1.2.5.2.1.5.4
Rewrite the expression.
Step 1.2.5.2.1.6
Combine and .
Step 1.2.5.2.1.7
Multiply by .
Step 1.2.5.2.1.8
Move the negative in front of the fraction.
Step 1.2.5.2.1.9
Multiply .
Step 1.2.5.2.1.9.1
Multiply by .
Step 1.2.5.2.1.9.2
Multiply by .
Step 1.2.5.2.2
Combine the numerators over the common denominator.
Step 1.2.5.2.3
Add and .
Step 1.2.5.2.4
Divide by .
Step 1.2.6
Substitute the values of , , and into the vertex form .
Step 1.3
Set equal to the new right side.
Step 2
Use the vertex form, , to determine the values of , , and .
Step 3
Find the vertex .
Step 4
Step 4.1
Find the distance from the vertex to a focus of the parabola by using the following formula.
Step 4.2
Substitute the value of into the formula.
Step 4.3
Simplify.
Step 4.3.1
Cancel the common factor of and .
Step 4.3.1.1
Rewrite as .
Step 4.3.1.2
Move the negative in front of the fraction.
Step 4.3.2
Combine and .
Step 4.3.3
Cancel the common factor of and .
Step 4.3.3.1
Factor out of .
Step 4.3.3.2
Cancel the common factors.
Step 4.3.3.2.1
Factor out of .
Step 4.3.3.2.2
Cancel the common factor.
Step 4.3.3.2.3
Rewrite the expression.
Step 4.3.4
Multiply the numerator by the reciprocal of the denominator.
Step 4.3.5
Multiply .
Step 4.3.5.1
Multiply by .
Step 4.3.5.2
Multiply by .
Step 5
Step 5.1
The directrix of a parabola is the vertical line found by subtracting from the x-coordinate of the vertex if the parabola opens left or right.
Step 5.2
Substitute the known values of and into the formula and simplify.
Step 6