Precalculus Examples

Find the Focus (y-2)^2=8(x+1)
Step 1
Isolate to the left side of the equation.
Tap for more steps...
Step 1.1
Rewrite the equation as .
Step 1.2
Divide each term in by and simplify.
Tap for more steps...
Step 1.2.1
Divide each term in by .
Step 1.2.2
Simplify the left side.
Tap for more steps...
Step 1.2.2.1
Cancel the common factor of .
Tap for more steps...
Step 1.2.2.1.1
Cancel the common factor.
Step 1.2.2.1.2
Divide by .
Step 1.3
Subtract from both sides of the equation.
Step 1.4
Reorder terms.
Step 2
Use the vertex form, , to determine the values of , , and .
Step 3
Find the vertex .
Step 4
Find , the distance from the vertex to the focus.
Tap for more steps...
Step 4.1
Find the distance from the vertex to a focus of the parabola by using the following formula.
Step 4.2
Substitute the value of into the formula.
Step 4.3
Simplify.
Tap for more steps...
Step 4.3.1
Combine and .
Step 4.3.2
Cancel the common factor of and .
Tap for more steps...
Step 4.3.2.1
Factor out of .
Step 4.3.2.2
Cancel the common factors.
Tap for more steps...
Step 4.3.2.2.1
Factor out of .
Step 4.3.2.2.2
Cancel the common factor.
Step 4.3.2.2.3
Rewrite the expression.
Step 4.3.3
Multiply the numerator by the reciprocal of the denominator.
Step 4.3.4
Multiply by .
Step 5
Find the focus.
Tap for more steps...
Step 5.1
The focus of a parabola can be found by adding to the x-coordinate if the parabola opens left or right.
Step 5.2
Substitute the known values of , , and into the formula and simplify.
Step 6