Precalculus Examples

Find the Asymptotes ((x-2)^2)/36-((y-3)^2)/9=1
(x-2)236-(y-3)29=1(x2)236(y3)29=1
Step 1
Simplify each term in the equation in order to set the right side equal to 11. The standard form of an ellipse or hyperbola requires the right side of the equation be 11.
(x-2)236-(y-3)29=1(x2)236(y3)29=1
Step 2
This is the form of a hyperbola. Use this form to determine the values used to find the asymptotes of the hyperbola.
(x-h)2a2-(y-k)2b2=1(xh)2a2(yk)2b2=1
Step 3
Match the values in this hyperbola to those of the standard form. The variable hh represents the x-offset from the origin, kk represents the y-offset from origin, aa.
a=6a=6
b=3b=3
k=3k=3
h=2h=2
Step 4
The asymptotes follow the form y=±b(x-h)a+ky=±b(xh)a+k because this hyperbola opens left and right.
y=±12(x-(2))+3y=±12(x(2))+3
Step 5
Simplify to find the first asymptote.
Tap for more steps...
Step 5.1
Remove parentheses.
y=12(x-(2))+3y=12(x(2))+3
Step 5.2
Simplify 12(x-(2))+312(x(2))+3.
Tap for more steps...
Step 5.2.1
Simplify each term.
Tap for more steps...
Step 5.2.1.1
Multiply -11 by 22.
y=12(x-2)+3y=12(x2)+3
Step 5.2.1.2
Apply the distributive property.
y=12x+12-2+3y=12x+122+3
Step 5.2.1.3
Combine 1212 and xx.
y=x2+12-2+3y=x2+122+3
Step 5.2.1.4
Cancel the common factor of 22.
Tap for more steps...
Step 5.2.1.4.1
Factor 22 out of -22.
y=x2+12(2(-1))+3y=x2+12(2(1))+3
Step 5.2.1.4.2
Cancel the common factor.
y=x2+12(2-1)+3
Step 5.2.1.4.3
Rewrite the expression.
y=x2-1+3
y=x2-1+3
y=x2-1+3
Step 5.2.2
Add -1 and 3.
y=x2+2
y=x2+2
y=x2+2
Step 6
Simplify to find the second asymptote.
Tap for more steps...
Step 6.1
Remove parentheses.
y=-12(x-(2))+3
Step 6.2
Simplify -12(x-(2))+3.
Tap for more steps...
Step 6.2.1
Simplify each term.
Tap for more steps...
Step 6.2.1.1
Multiply -1 by 2.
y=-12(x-2)+3
Step 6.2.1.2
Apply the distributive property.
y=-12x-12-2+3
Step 6.2.1.3
Combine x and 12.
y=-x2-12-2+3
Step 6.2.1.4
Cancel the common factor of 2.
Tap for more steps...
Step 6.2.1.4.1
Move the leading negative in -12 into the numerator.
y=-x2+-12-2+3
Step 6.2.1.4.2
Factor 2 out of -2.
y=-x2+-12(2(-1))+3
Step 6.2.1.4.3
Cancel the common factor.
y=-x2+-12(2-1)+3
Step 6.2.1.4.4
Rewrite the expression.
y=-x2-1-1+3
y=-x2-1-1+3
Step 6.2.1.5
Multiply -1 by -1.
y=-x2+1+3
y=-x2+1+3
Step 6.2.2
Add 1 and 3.
y=-x2+4
y=-x2+4
y=-x2+4
Step 7
This hyperbola has two asymptotes.
y=x2+2,y=-x2+4
Step 8
The asymptotes are y=x2+2 and y=-x2+4.
Asymptotes: y=x2+2,y=-x2+4
Step 9
image of graph
(
(
)
)
|
|
[
[
]
]
7
7
8
8
9
9
°
°
θ
θ
4
4
5
5
6
6
/
/
^
^
×
×
>
>
π
π
1
1
2
2
3
3
-
-
+
+
÷
÷
<
<
,
,
0
0
.
.
%
%
=
=
 [x2  12  π  xdx ]