Enter a problem...
Precalculus Examples
(x-2)236-(y-3)29=1(x−2)236−(y−3)29=1
Step 1
Simplify each term in the equation in order to set the right side equal to 11. The standard form of an ellipse or hyperbola requires the right side of the equation be 11.
(x-2)236-(y-3)29=1(x−2)236−(y−3)29=1
Step 2
This is the form of a hyperbola. Use this form to determine the values used to find the asymptotes of the hyperbola.
(x-h)2a2-(y-k)2b2=1(x−h)2a2−(y−k)2b2=1
Step 3
Match the values in this hyperbola to those of the standard form. The variable hh represents the x-offset from the origin, kk represents the y-offset from origin, aa.
a=6a=6
b=3b=3
k=3k=3
h=2h=2
Step 4
The asymptotes follow the form y=±b(x-h)a+ky=±b(x−h)a+k because this hyperbola opens left and right.
y=±12⋅(x-(2))+3y=±12⋅(x−(2))+3
Step 5
Step 5.1
Remove parentheses.
y=12⋅(x-(2))+3y=12⋅(x−(2))+3
Step 5.2
Simplify 12⋅(x-(2))+312⋅(x−(2))+3.
Step 5.2.1
Simplify each term.
Step 5.2.1.1
Multiply -1−1 by 22.
y=12⋅(x-2)+3y=12⋅(x−2)+3
Step 5.2.1.2
Apply the distributive property.
y=12x+12⋅-2+3y=12x+12⋅−2+3
Step 5.2.1.3
Combine 1212 and xx.
y=x2+12⋅-2+3y=x2+12⋅−2+3
Step 5.2.1.4
Cancel the common factor of 22.
Step 5.2.1.4.1
Factor 22 out of -2−2.
y=x2+12⋅(2(-1))+3y=x2+12⋅(2(−1))+3
Step 5.2.1.4.2
Cancel the common factor.
y=x2+12⋅(2⋅-1)+3
Step 5.2.1.4.3
Rewrite the expression.
y=x2-1+3
y=x2-1+3
y=x2-1+3
Step 5.2.2
Add -1 and 3.
y=x2+2
y=x2+2
y=x2+2
Step 6
Step 6.1
Remove parentheses.
y=-12⋅(x-(2))+3
Step 6.2
Simplify -12⋅(x-(2))+3.
Step 6.2.1
Simplify each term.
Step 6.2.1.1
Multiply -1 by 2.
y=-12⋅(x-2)+3
Step 6.2.1.2
Apply the distributive property.
y=-12x-12⋅-2+3
Step 6.2.1.3
Combine x and 12.
y=-x2-12⋅-2+3
Step 6.2.1.4
Cancel the common factor of 2.
Step 6.2.1.4.1
Move the leading negative in -12 into the numerator.
y=-x2+-12⋅-2+3
Step 6.2.1.4.2
Factor 2 out of -2.
y=-x2+-12⋅(2(-1))+3
Step 6.2.1.4.3
Cancel the common factor.
y=-x2+-12⋅(2⋅-1)+3
Step 6.2.1.4.4
Rewrite the expression.
y=-x2-1⋅-1+3
y=-x2-1⋅-1+3
Step 6.2.1.5
Multiply -1 by -1.
y=-x2+1+3
y=-x2+1+3
Step 6.2.2
Add 1 and 3.
y=-x2+4
y=-x2+4
y=-x2+4
Step 7
This hyperbola has two asymptotes.
y=x2+2,y=-x2+4
Step 8
The asymptotes are y=x2+2 and y=-x2+4.
Asymptotes: y=x2+2,y=-x2+4
Step 9
