Precalculus Examples

Write in Standard Form 4x^2+3y^2-2x+9y+16=0
Step 1
Solve for .
Tap for more steps...
Step 1.1
Use the quadratic formula to find the solutions.
Step 1.2
Substitute the values , , and into the quadratic formula and solve for .
Step 1.3
Simplify.
Tap for more steps...
Step 1.3.1
Simplify the numerator.
Tap for more steps...
Step 1.3.1.1
Raise to the power of .
Step 1.3.1.2
Multiply by .
Step 1.3.1.3
Apply the distributive property.
Step 1.3.1.4
Simplify.
Tap for more steps...
Step 1.3.1.4.1
Multiply by .
Step 1.3.1.4.2
Multiply by .
Step 1.3.1.4.3
Multiply by .
Step 1.3.1.5
Subtract from .
Step 1.3.1.6
Factor out of .
Tap for more steps...
Step 1.3.1.6.1
Factor out of .
Step 1.3.1.6.2
Factor out of .
Step 1.3.1.6.3
Factor out of .
Step 1.3.1.6.4
Factor out of .
Step 1.3.1.6.5
Factor out of .
Step 1.3.2
Multiply by .
Step 1.4
Simplify the expression to solve for the portion of the .
Tap for more steps...
Step 1.4.1
Simplify the numerator.
Tap for more steps...
Step 1.4.1.1
Raise to the power of .
Step 1.4.1.2
Multiply by .
Step 1.4.1.3
Apply the distributive property.
Step 1.4.1.4
Simplify.
Tap for more steps...
Step 1.4.1.4.1
Multiply by .
Step 1.4.1.4.2
Multiply by .
Step 1.4.1.4.3
Multiply by .
Step 1.4.1.5
Subtract from .
Step 1.4.1.6
Factor out of .
Tap for more steps...
Step 1.4.1.6.1
Factor out of .
Step 1.4.1.6.2
Factor out of .
Step 1.4.1.6.3
Factor out of .
Step 1.4.1.6.4
Factor out of .
Step 1.4.1.6.5
Factor out of .
Step 1.4.2
Multiply by .
Step 1.4.3
Change the to .
Step 1.4.4
Rewrite as .
Step 1.4.5
Factor out of .
Step 1.4.6
Factor out of .
Step 1.4.7
Move the negative in front of the fraction.
Step 1.5
Simplify the expression to solve for the portion of the .
Tap for more steps...
Step 1.5.1
Simplify the numerator.
Tap for more steps...
Step 1.5.1.1
Raise to the power of .
Step 1.5.1.2
Multiply by .
Step 1.5.1.3
Apply the distributive property.
Step 1.5.1.4
Simplify.
Tap for more steps...
Step 1.5.1.4.1
Multiply by .
Step 1.5.1.4.2
Multiply by .
Step 1.5.1.4.3
Multiply by .
Step 1.5.1.5
Subtract from .
Step 1.5.1.6
Factor out of .
Tap for more steps...
Step 1.5.1.6.1
Factor out of .
Step 1.5.1.6.2
Factor out of .
Step 1.5.1.6.3
Factor out of .
Step 1.5.1.6.4
Factor out of .
Step 1.5.1.6.5
Factor out of .
Step 1.5.2
Multiply by .
Step 1.5.3
Change the to .
Step 1.5.4
Factor out of .
Tap for more steps...
Step 1.5.4.1
Reorder and .
Step 1.5.4.2
Factor out of .
Step 1.5.4.3
Rewrite as .
Step 1.5.4.4
Factor out of .
Step 1.5.5
Move the negative in front of the fraction.
Step 1.6
The final answer is the combination of both solutions.
Step 2
To write a polynomial in standard form, simplify and then arrange the terms in descending order.
Step 3
Split the fraction into two fractions.
Step 4
Simplify each term.
Tap for more steps...
Step 4.1
Cancel the common factor of and .
Tap for more steps...
Step 4.1.1
Factor out of .
Step 4.1.2
Cancel the common factors.
Tap for more steps...
Step 4.1.2.1
Factor out of .
Step 4.1.2.2
Cancel the common factor.
Step 4.1.2.3
Rewrite the expression.
Step 4.2
Move the negative in front of the fraction.
Step 5
Apply the distributive property.
Step 6
Split the fraction into two fractions.
Step 7
Cancel the common factor of and .
Tap for more steps...
Step 7.1
Factor out of .
Step 7.2
Cancel the common factors.
Tap for more steps...
Step 7.2.1
Factor out of .
Step 7.2.2
Cancel the common factor.
Step 7.2.3
Rewrite the expression.
Step 8
Apply the distributive property.
Step 9
Reorder terms.
Step 10
Remove parentheses.
Step 11