Precalculus Examples

Find Trig Functions Using Identities cos(theta)=4/7 , csc(theta)<0
cos(θ)=47cos(θ)=47 , csc(θ)<0
Step 1
The cosecant function is negative in the third and fourth quadrants. The cosine function is positive in the first and fourth quadrants. The set of solutions for θ are limited to the fourth quadrant since that is the only quadrant found in both sets.
Solution is in the fourth quadrant.
Step 2
Use the definition of cosine to find the known sides of the unit circle right triangle. The quadrant determines the sign on each of the values.
cos(θ)=adjacenthypotenuse
Step 3
Find the opposite side of the unit circle triangle. Since the adjacent side and hypotenuse are known, use the Pythagorean theorem to find the remaining side.
Opposite=-hypotenuse2-adjacent2
Step 4
Replace the known values in the equation.
Opposite=-(7)2-(4)2
Step 5
Simplify inside the radical.
Tap for more steps...
Step 5.1
Negate (7)2-(4)2.
Opposite =-(7)2-(4)2
Step 5.2
Raise 7 to the power of 2.
Opposite =-49-(4)2
Step 5.3
Raise 4 to the power of 2.
Opposite =-49-116
Step 5.4
Multiply -1 by 16.
Opposite =-49-16
Step 5.5
Subtract 16 from 49.
Opposite =-33
Opposite =-33
Step 6
Find the value of sine.
Tap for more steps...
Step 6.1
Use the definition of sine to find the value of sin(θ).
sin(θ)=opphyp
Step 6.2
Substitute in the known values.
sin(θ)=-337
Step 6.3
Move the negative in front of the fraction.
sin(θ)=-337
sin(θ)=-337
Step 7
Find the value of tangent.
Tap for more steps...
Step 7.1
Use the definition of tangent to find the value of tan(θ).
tan(θ)=oppadj
Step 7.2
Substitute in the known values.
tan(θ)=-334
Step 7.3
Move the negative in front of the fraction.
tan(θ)=-334
tan(θ)=-334
Step 8
Find the value of cotangent.
Tap for more steps...
Step 8.1
Use the definition of cotangent to find the value of cot(θ).
cot(θ)=adjopp
Step 8.2
Substitute in the known values.
cot(θ)=4-33
Step 8.3
Simplify the value of cot(θ).
Tap for more steps...
Step 8.3.1
Move the negative in front of the fraction.
cot(θ)=-433
Step 8.3.2
Multiply 433 by 3333.
cot(θ)=-(4333333)
Step 8.3.3
Combine and simplify the denominator.
Tap for more steps...
Step 8.3.3.1
Multiply 433 by 3333.
cot(θ)=-4333333
Step 8.3.3.2
Raise 33 to the power of 1.
cot(θ)=-4333333
Step 8.3.3.3
Raise 33 to the power of 1.
cot(θ)=-4333333
Step 8.3.3.4
Use the power rule aman=am+n to combine exponents.
cot(θ)=-433331+1
Step 8.3.3.5
Add 1 and 1.
cot(θ)=-433332
Step 8.3.3.6
Rewrite 332 as 33.
Tap for more steps...
Step 8.3.3.6.1
Use nax=axn to rewrite 33 as 3312.
cot(θ)=-433(3312)2
Step 8.3.3.6.2
Apply the power rule and multiply exponents, (am)n=amn.
cot(θ)=-43333122
Step 8.3.3.6.3
Combine 12 and 2.
cot(θ)=-4333322
Step 8.3.3.6.4
Cancel the common factor of 2.
Tap for more steps...
Step 8.3.3.6.4.1
Cancel the common factor.
cot(θ)=-4333322
Step 8.3.3.6.4.2
Rewrite the expression.
cot(θ)=-43333
cot(θ)=-43333
Step 8.3.3.6.5
Evaluate the exponent.
cot(θ)=-43333
cot(θ)=-43333
cot(θ)=-43333
cot(θ)=-43333
cot(θ)=-43333
Step 9
Find the value of secant.
Tap for more steps...
Step 9.1
Use the definition of secant to find the value of sec(θ).
sec(θ)=hypadj
Step 9.2
Substitute in the known values.
sec(θ)=74
sec(θ)=74
Step 10
Find the value of cosecant.
Tap for more steps...
Step 10.1
Use the definition of cosecant to find the value of csc(θ).
csc(θ)=hypopp
Step 10.2
Substitute in the known values.
csc(θ)=7-33
Step 10.3
Simplify the value of csc(θ).
Tap for more steps...
Step 10.3.1
Move the negative in front of the fraction.
csc(θ)=-733
Step 10.3.2
Multiply 733 by 3333.
csc(θ)=-(7333333)
Step 10.3.3
Combine and simplify the denominator.
Tap for more steps...
Step 10.3.3.1
Multiply 733 by 3333.
csc(θ)=-7333333
Step 10.3.3.2
Raise 33 to the power of 1.
csc(θ)=-7333333
Step 10.3.3.3
Raise 33 to the power of 1.
csc(θ)=-7333333
Step 10.3.3.4
Use the power rule aman=am+n to combine exponents.
csc(θ)=-733331+1
Step 10.3.3.5
Add 1 and 1.
csc(θ)=-733332
Step 10.3.3.6
Rewrite 332 as 33.
Tap for more steps...
Step 10.3.3.6.1
Use nax=axn to rewrite 33 as 3312.
csc(θ)=-733(3312)2
Step 10.3.3.6.2
Apply the power rule and multiply exponents, (am)n=amn.
csc(θ)=-73333122
Step 10.3.3.6.3
Combine 12 and 2.
csc(θ)=-7333322
Step 10.3.3.6.4
Cancel the common factor of 2.
Tap for more steps...
Step 10.3.3.6.4.1
Cancel the common factor.
csc(θ)=-7333322
Step 10.3.3.6.4.2
Rewrite the expression.
csc(θ)=-73333
csc(θ)=-73333
Step 10.3.3.6.5
Evaluate the exponent.
csc(θ)=-73333
csc(θ)=-73333
csc(θ)=-73333
csc(θ)=-73333
csc(θ)=-73333
Step 11
This is the solution to each trig value.
sin(θ)=-337
cos(θ)=47
tan(θ)=-334
cot(θ)=-43333
sec(θ)=74
csc(θ)=-73333
 [x2  12  π  xdx ]