Enter a problem...
Precalculus Examples
cos(θ)=47cos(θ)=47 , csc(θ)<0
Step 1
The cosecant function is negative in the third and fourth quadrants. The cosine function is positive in the first and fourth quadrants. The set of solutions for θ are limited to the fourth quadrant since that is the only quadrant found in both sets.
Solution is in the fourth quadrant.
Step 2
Use the definition of cosine to find the known sides of the unit circle right triangle. The quadrant determines the sign on each of the values.
cos(θ)=adjacenthypotenuse
Step 3
Find the opposite side of the unit circle triangle. Since the adjacent side and hypotenuse are known, use the Pythagorean theorem to find the remaining side.
Opposite=-√hypotenuse2-adjacent2
Step 4
Replace the known values in the equation.
Opposite=-√(7)2-(4)2
Step 5
Step 5.1
Negate √(7)2-(4)2.
Opposite =-√(7)2-(4)2
Step 5.2
Raise 7 to the power of 2.
Opposite =-√49-(4)2
Step 5.3
Raise 4 to the power of 2.
Opposite =-√49-1⋅16
Step 5.4
Multiply -1 by 16.
Opposite =-√49-16
Step 5.5
Subtract 16 from 49.
Opposite =-√33
Opposite =-√33
Step 6
Step 6.1
Use the definition of sine to find the value of sin(θ).
sin(θ)=opphyp
Step 6.2
Substitute in the known values.
sin(θ)=-√337
Step 6.3
Move the negative in front of the fraction.
sin(θ)=-√337
sin(θ)=-√337
Step 7
Step 7.1
Use the definition of tangent to find the value of tan(θ).
tan(θ)=oppadj
Step 7.2
Substitute in the known values.
tan(θ)=-√334
Step 7.3
Move the negative in front of the fraction.
tan(θ)=-√334
tan(θ)=-√334
Step 8
Step 8.1
Use the definition of cotangent to find the value of cot(θ).
cot(θ)=adjopp
Step 8.2
Substitute in the known values.
cot(θ)=4-√33
Step 8.3
Simplify the value of cot(θ).
Step 8.3.1
Move the negative in front of the fraction.
cot(θ)=-4√33
Step 8.3.2
Multiply 4√33 by √33√33.
cot(θ)=-(4√33⋅√33√33)
Step 8.3.3
Combine and simplify the denominator.
Step 8.3.3.1
Multiply 4√33 by √33√33.
cot(θ)=-4√33√33√33
Step 8.3.3.2
Raise √33 to the power of 1.
cot(θ)=-4√33√33√33
Step 8.3.3.3
Raise √33 to the power of 1.
cot(θ)=-4√33√33√33
Step 8.3.3.4
Use the power rule aman=am+n to combine exponents.
cot(θ)=-4√33√331+1
Step 8.3.3.5
Add 1 and 1.
cot(θ)=-4√33√332
Step 8.3.3.6
Rewrite √332 as 33.
Step 8.3.3.6.1
Use n√ax=axn to rewrite √33 as 3312.
cot(θ)=-4√33(3312)2
Step 8.3.3.6.2
Apply the power rule and multiply exponents, (am)n=amn.
cot(θ)=-4√333312⋅2
Step 8.3.3.6.3
Combine 12 and 2.
cot(θ)=-4√333322
Step 8.3.3.6.4
Cancel the common factor of 2.
Step 8.3.3.6.4.1
Cancel the common factor.
cot(θ)=-4√333322
Step 8.3.3.6.4.2
Rewrite the expression.
cot(θ)=-4√3333
cot(θ)=-4√3333
Step 8.3.3.6.5
Evaluate the exponent.
cot(θ)=-4√3333
cot(θ)=-4√3333
cot(θ)=-4√3333
cot(θ)=-4√3333
cot(θ)=-4√3333
Step 9
Step 9.1
Use the definition of secant to find the value of sec(θ).
sec(θ)=hypadj
Step 9.2
Substitute in the known values.
sec(θ)=74
sec(θ)=74
Step 10
Step 10.1
Use the definition of cosecant to find the value of csc(θ).
csc(θ)=hypopp
Step 10.2
Substitute in the known values.
csc(θ)=7-√33
Step 10.3
Simplify the value of csc(θ).
Step 10.3.1
Move the negative in front of the fraction.
csc(θ)=-7√33
Step 10.3.2
Multiply 7√33 by √33√33.
csc(θ)=-(7√33⋅√33√33)
Step 10.3.3
Combine and simplify the denominator.
Step 10.3.3.1
Multiply 7√33 by √33√33.
csc(θ)=-7√33√33√33
Step 10.3.3.2
Raise √33 to the power of 1.
csc(θ)=-7√33√33√33
Step 10.3.3.3
Raise √33 to the power of 1.
csc(θ)=-7√33√33√33
Step 10.3.3.4
Use the power rule aman=am+n to combine exponents.
csc(θ)=-7√33√331+1
Step 10.3.3.5
Add 1 and 1.
csc(θ)=-7√33√332
Step 10.3.3.6
Rewrite √332 as 33.
Step 10.3.3.6.1
Use n√ax=axn to rewrite √33 as 3312.
csc(θ)=-7√33(3312)2
Step 10.3.3.6.2
Apply the power rule and multiply exponents, (am)n=amn.
csc(θ)=-7√333312⋅2
Step 10.3.3.6.3
Combine 12 and 2.
csc(θ)=-7√333322
Step 10.3.3.6.4
Cancel the common factor of 2.
Step 10.3.3.6.4.1
Cancel the common factor.
csc(θ)=-7√333322
Step 10.3.3.6.4.2
Rewrite the expression.
csc(θ)=-7√3333
csc(θ)=-7√3333
Step 10.3.3.6.5
Evaluate the exponent.
csc(θ)=-7√3333
csc(θ)=-7√3333
csc(θ)=-7√3333
csc(θ)=-7√3333
csc(θ)=-7√3333
Step 11
This is the solution to each trig value.
sin(θ)=-√337
cos(θ)=47
tan(θ)=-√334
cot(θ)=-4√3333
sec(θ)=74
csc(θ)=-7√3333